Multi-Year Non-Life Insurance Risk for Correlated Loss Portfolios Under Chain Ladder Model Assumptions

Marc Linde
{"title":"Multi-Year Non-Life Insurance Risk for Correlated Loss Portfolios Under Chain Ladder Model Assumptions","authors":"Marc Linde","doi":"10.2139/ssrn.2869217","DOIUrl":null,"url":null,"abstract":"In this paper we extend the definition of multi-year claims development results and quantification of multi-year non-life insurance risk to the bivariate chain ladder model as introduced by Braun in 2004. In this model, we assume two correlated loss portfolios each of which is underlying the classical chain ladder model. In accordance with standard literature, multi-year risk is defined through the variation of the multi-year claims development result and quantified in terms of the corresponding mean squared error of prediction. Following previous research on the univariate chain ladder model, for the first time we derive closed analytical expressions for the prediction error of the aggregate multi-year claims development result via first-order Taylor approximation. We reproduce well-known results for the ultimo view from literature. The goodness of our approximation is confirmed by a simulation study. Furthermore, a case study demonstrates the applicability of our analytical formulae.","PeriodicalId":187811,"journal":{"name":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2869217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we extend the definition of multi-year claims development results and quantification of multi-year non-life insurance risk to the bivariate chain ladder model as introduced by Braun in 2004. In this model, we assume two correlated loss portfolios each of which is underlying the classical chain ladder model. In accordance with standard literature, multi-year risk is defined through the variation of the multi-year claims development result and quantified in terms of the corresponding mean squared error of prediction. Following previous research on the univariate chain ladder model, for the first time we derive closed analytical expressions for the prediction error of the aggregate multi-year claims development result via first-order Taylor approximation. We reproduce well-known results for the ultimo view from literature. The goodness of our approximation is confirmed by a simulation study. Furthermore, a case study demonstrates the applicability of our analytical formulae.
链梯模型假设下相关损失组合的多年期非寿险风险
本文将多年理赔发展结果和多年非寿险风险量化的定义推广到Braun(2004)提出的二元链梯模型。在这个模型中,我们假设两个相关的损失组合,每一个都是经典的链梯模型的基础。根据标准文献,通过多年理赔发展结果的变化来定义多年风险,并用相应的预测均方差来量化多年风险。在对单变量链梯模型进行研究的基础上,首次利用一阶泰勒近似导出了多年索赔开发结果预测误差的封闭解析表达式。我们从文献中复制了关于终极观点的众所周知的结果。仿真研究证实了我们的近似是正确的。此外,一个案例研究证明了我们的分析公式的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信