A streaming hardware architecture for real-time SIFT feature extraction

Hector A. Li Sanchez, A. George
{"title":"A streaming hardware architecture for real-time SIFT feature extraction","authors":"Hector A. Li Sanchez, A. George","doi":"10.1109/ICFPT52863.2021.9609932","DOIUrl":null,"url":null,"abstract":"The Scale-Invariant Feature Transform (SIFT) is a feature extractor that serves as a key step in many computer-vision pipelines. Real-time operation based on a software-only approach is often infeasible, but FPGAs can be employed to parallelize execution and accelerate the application to meet latency requirements. In this study, we present a stream-based hardware acceleration architecture for SIFT feature extraction. Using a novel strategy to store pixels required for descriptor computation, the execution time needed to generate SIFT descriptors is greatly improved relative to previous designs. This strategy also enables further reduction of the execution time by introducing multiple processing elements (PEs) for computation of several SIFT descriptors in parallel. Additionally, the proposed architecture supports keypoint detection at an arbitrary number of octaves and allows for runtime configuration of various parameters. An FPGA implementation targeting the Xilinx Zynq-7045 system-on-chip (SoC) device is deployed to demonstrate the efficiency of the proposed architecture. In the target hardware, the resulting system is capable of processing images with a resolution of 1280 × 720 pixels at up to 150 FPS while maintaining modest resource utilization.","PeriodicalId":376220,"journal":{"name":"2021 International Conference on Field-Programmable Technology (ICFPT)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT52863.2021.9609932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Scale-Invariant Feature Transform (SIFT) is a feature extractor that serves as a key step in many computer-vision pipelines. Real-time operation based on a software-only approach is often infeasible, but FPGAs can be employed to parallelize execution and accelerate the application to meet latency requirements. In this study, we present a stream-based hardware acceleration architecture for SIFT feature extraction. Using a novel strategy to store pixels required for descriptor computation, the execution time needed to generate SIFT descriptors is greatly improved relative to previous designs. This strategy also enables further reduction of the execution time by introducing multiple processing elements (PEs) for computation of several SIFT descriptors in parallel. Additionally, the proposed architecture supports keypoint detection at an arbitrary number of octaves and allows for runtime configuration of various parameters. An FPGA implementation targeting the Xilinx Zynq-7045 system-on-chip (SoC) device is deployed to demonstrate the efficiency of the proposed architecture. In the target hardware, the resulting system is capable of processing images with a resolution of 1280 × 720 pixels at up to 150 FPS while maintaining modest resource utilization.
一种实时SIFT特征提取的流硬件架构
尺度不变特征变换(SIFT)是一种特征提取方法,是许多计算机视觉管道中的关键步骤。基于纯软件方法的实时操作通常是不可行的,但fpga可以用于并行执行并加速应用程序以满足延迟要求。在本研究中,我们提出了一种基于流的SIFT特征提取硬件加速架构。使用一种新的策略来存储描述符计算所需的像素,相对于以前的设计,生成SIFT描述符所需的执行时间大大提高。该策略还通过引入多个处理元素(pe)来并行计算多个SIFT描述符,从而进一步减少了执行时间。此外,所提出的体系结构支持任意数量的八度的关键点检测,并允许运行时对各种参数进行配置。针对Xilinx Zynq-7045系统级芯片(SoC)器件部署了FPGA实现,以证明所提出架构的效率。在目标硬件中,生成的系统能够以高达150 FPS的速度处理分辨率为1280 × 720像素的图像,同时保持适度的资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信