Learning fuzzy logic control: an indirect control approach

B.H. Wang, G. Vachtsevanos
{"title":"Learning fuzzy logic control: an indirect control approach","authors":"B.H. Wang, G. Vachtsevanos","doi":"10.1109/FUZZY.1992.258632","DOIUrl":null,"url":null,"abstract":"A systematic methodology for the design of a learning fuzzy logic control system is presented. The basic design idea is an indirect control approach where selection of control parameters relies on the estimates of process parameters. The control law consists of three components: an online fuzzy identifier, a desired transition model, and a fuzzy controller. The fuzzy version of the signal Hebbian learning law is introduced for adaptively identifying the process relation of the unknown plant. The desired transition model is constructed so that the control designer's goal can be achieved. A computationally efficient way to construct the transition model is provided via a forward-in-time method based on the concept of truncated policy space. Clear trade-offs between control performance and computational complexity are obtained.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A systematic methodology for the design of a learning fuzzy logic control system is presented. The basic design idea is an indirect control approach where selection of control parameters relies on the estimates of process parameters. The control law consists of three components: an online fuzzy identifier, a desired transition model, and a fuzzy controller. The fuzzy version of the signal Hebbian learning law is introduced for adaptively identifying the process relation of the unknown plant. The desired transition model is constructed so that the control designer's goal can be achieved. A computationally efficient way to construct the transition model is provided via a forward-in-time method based on the concept of truncated policy space. Clear trade-offs between control performance and computational complexity are obtained.<>
学习模糊逻辑控制:一种间接控制方法
提出了一种学习模糊控制系统的系统设计方法。基本的设计思想是一种间接控制方法,其中控制参数的选择依赖于过程参数的估计。控制律由三个部分组成:在线模糊辨识器、期望过渡模型和模糊控制器。引入模糊版的信号Hebbian学习律,用于自适应识别未知对象的过程关系。通过构造所需的转换模型,可以实现控件设计者的目标。基于截断策略空间的概念,提出了一种计算效率高的迁移模型构建方法。在控制性能和计算复杂度之间获得了明确的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信