Optimized Inter-Turn Short Circuit Fault Diagnosis for Induction Motors using Neural Networks with LeLeRU

Ibrahim M. Gaber, Omar Shalash, M. Hamad
{"title":"Optimized Inter-Turn Short Circuit Fault Diagnosis for Induction Motors using Neural Networks with LeLeRU","authors":"Ibrahim M. Gaber, Omar Shalash, M. Hamad","doi":"10.1109/CPERE56564.2023.10119618","DOIUrl":null,"url":null,"abstract":"Induction Motor (IM) restoration costs and downtime can be decreased by early Inter-turn short circuit fault (ISCF) detection. Due to the controller’s innate desire to generate an adjusted set of currents actually below fault conditions, fault detection of electric motors driven by an inverter with a model predictive control (MPC) algorithm becomes more difficult in inverter-driven applications. We suggest a novel actuation method in this contribution using the switching sequences produced by the Finite Control Set Model Predictive Controller (FCS-MPC) for ISCF of IM. based on diagnostics from neural networks (NN). Hence, no extra sensors or equipment are required for fault detection. This paper proposes a novel procedure for ISCF fault location of IM based on Neural Networks with Learnable Leaky ReLU (LeLeLU) function.","PeriodicalId":169048,"journal":{"name":"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPERE56564.2023.10119618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Induction Motor (IM) restoration costs and downtime can be decreased by early Inter-turn short circuit fault (ISCF) detection. Due to the controller’s innate desire to generate an adjusted set of currents actually below fault conditions, fault detection of electric motors driven by an inverter with a model predictive control (MPC) algorithm becomes more difficult in inverter-driven applications. We suggest a novel actuation method in this contribution using the switching sequences produced by the Finite Control Set Model Predictive Controller (FCS-MPC) for ISCF of IM. based on diagnostics from neural networks (NN). Hence, no extra sensors or equipment are required for fault detection. This paper proposes a novel procedure for ISCF fault location of IM based on Neural Networks with Learnable Leaky ReLU (LeLeLU) function.
基于LeLeRU的神经网络异步电动机匝间短路故障优化诊断
早期匝间短路故障(ISCF)检测可以减少感应电机(IM)的修复成本和停机时间。由于控制器天生希望产生一组实际低于故障条件的可调整电流,因此在逆变器驱动的应用中,使用模型预测控制(MPC)算法对逆变器驱动的电动机进行故障检测变得更加困难。在这篇论文中,我们提出了一种新的驱动方法,利用有限控制集模型预测控制器(FCS-MPC)对IM的ISCF产生的开关序列。基于神经网络的诊断。因此,不需要额外的传感器或设备进行故障检测。提出了一种基于LeLeLU (Leaky ReLU)函数的神经网络的IM ISCF故障定位方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信