A multilevel spectral hypergraph partitioning approach for color image segmentation

Aurélien Ducournau, S. Rital, A. Bretto, B. Laget
{"title":"A multilevel spectral hypergraph partitioning approach for color image segmentation","authors":"Aurélien Ducournau, S. Rital, A. Bretto, B. Laget","doi":"10.1109/ICSIPA.2009.5478690","DOIUrl":null,"url":null,"abstract":"In many image processing applications, and in the human visual system, relationships among objects of interest are more complex than pairwise. Simply approximating complex relationships as pairwise ones can lead to loss of information. A natural way to describe complex relationships, without loss of information, is to use hypergraphs. In this paper, we use a Color Image Neighborhood Hypergraph representation (CINH), which extracts all features and their consistencies in the image data and whose mode of use is close to the perceptual grouping. We formulate a color image segmentation problem as a CINH partitioning problem. A new multilevel spectral hypergraph partitioning approach is presented. Our experiments on the Berkeley images database showed encouraging results compared with the graph partitioning strategy based on Normalized Cut (NCut) criteria.","PeriodicalId":400165,"journal":{"name":"2009 IEEE International Conference on Signal and Image Processing Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2009.5478690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In many image processing applications, and in the human visual system, relationships among objects of interest are more complex than pairwise. Simply approximating complex relationships as pairwise ones can lead to loss of information. A natural way to describe complex relationships, without loss of information, is to use hypergraphs. In this paper, we use a Color Image Neighborhood Hypergraph representation (CINH), which extracts all features and their consistencies in the image data and whose mode of use is close to the perceptual grouping. We formulate a color image segmentation problem as a CINH partitioning problem. A new multilevel spectral hypergraph partitioning approach is presented. Our experiments on the Berkeley images database showed encouraging results compared with the graph partitioning strategy based on Normalized Cut (NCut) criteria.
一种用于彩色图像分割的多层光谱超图分割方法
在许多图像处理应用程序中,以及在人类视觉系统中,感兴趣的对象之间的关系比成对的更复杂。简单地将复杂关系近似为成对关系可能会导致信息丢失。描述复杂关系而不丢失信息的自然方法是使用超图。在本文中,我们使用彩色图像邻域超图表示(CINH),它提取图像数据中的所有特征及其一致性,其使用模式接近于感知分组。我们将彩色图像分割问题表述为CINH分割问题。提出了一种新的多层谱超图划分方法。与基于归一化切割(NCut)标准的图划分策略相比,我们在Berkeley图像数据库上的实验显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信