One-dimensional Gaussian Density Function Segmentation Based on Piecewise Linear Approximation

Nasrallah Tahir, M. Boudraa, El-sedik Lamini, A. A. E. Ouchdi
{"title":"One-dimensional Gaussian Density Function Segmentation Based on Piecewise Linear Approximation","authors":"Nasrallah Tahir, M. Boudraa, El-sedik Lamini, A. A. E. Ouchdi","doi":"10.1109/ICAECCS56710.2023.10104618","DOIUrl":null,"url":null,"abstract":"One of the main challenges in embedding popular audio-visual applications is the hardware implementation of one-dimensional Standard Gaussian density function. The aim of this work is to contribute with an approach to ease this implementation. The degree-l polynomial approximation has been used to segment the considered function. An interesting feature of the proposed approach is that the number of segment decreases for more important error accuracy. The second contribution is the implementation of the proposed algorithm using the content-addressable memory (CAM) method. The synthesis and physical implementation have been done using Cadence tools. The obtained performances are very competitive, especially the small area which depicts linear evolution when the bit-width increases.","PeriodicalId":447668,"journal":{"name":"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECCS56710.2023.10104618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main challenges in embedding popular audio-visual applications is the hardware implementation of one-dimensional Standard Gaussian density function. The aim of this work is to contribute with an approach to ease this implementation. The degree-l polynomial approximation has been used to segment the considered function. An interesting feature of the proposed approach is that the number of segment decreases for more important error accuracy. The second contribution is the implementation of the proposed algorithm using the content-addressable memory (CAM) method. The synthesis and physical implementation have been done using Cadence tools. The obtained performances are very competitive, especially the small area which depicts linear evolution when the bit-width increases.
基于分段线性逼近的一维高斯密度函数分割
嵌入流行的视听应用程序的主要挑战之一是一维标准高斯密度函数的硬件实现。这项工作的目的是提供一种简化此实现的方法。1次多项式近似已被用于分割所考虑的函数。该方法的一个有趣的特点是,对于更重要的误差精度,片段的数量会减少。第二个贡献是使用内容可寻址存储器(CAM)方法实现所提出的算法。合成和物理执行是使用Cadence工具完成的。所获得的性能非常有竞争力,特别是当比特宽度增加时,小面积呈现线性演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信