{"title":"Handwritten numeral recognition based on hierarchically self-organizing learning networks with spatio-temporal pattern representation","authors":"Sukhan Lee, J. C. Pan","doi":"10.1109/CVPR.1992.223276","DOIUrl":null,"url":null,"abstract":"An approach for tracing, representation, and recognition of a handwritten numeral in an offline environment is presented. A 2D spatial representation of a numeral is first transformed into a 3D spatiotemporal representation by identifying the tracing sequence based on a set of heuristic rules acting as transformation operators. Given the dynamic information of the tracing sequence, a multiresolution critical-point segmentation method is proposed to extract local feature points, at varying degrees of scale and coarseness. A neural network architecture, the hierarchically self-organizing learning (HSOL) network (S. Lee, J.C. Pan, 1989), especially for handwritten numeral recognition, is presented. Experimental results based on a bidirectional HSOL network indicated that the method is robust in terms of variations, deformations, and corruption, achieving about 99% recognition rate for the test patterns.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
An approach for tracing, representation, and recognition of a handwritten numeral in an offline environment is presented. A 2D spatial representation of a numeral is first transformed into a 3D spatiotemporal representation by identifying the tracing sequence based on a set of heuristic rules acting as transformation operators. Given the dynamic information of the tracing sequence, a multiresolution critical-point segmentation method is proposed to extract local feature points, at varying degrees of scale and coarseness. A neural network architecture, the hierarchically self-organizing learning (HSOL) network (S. Lee, J.C. Pan, 1989), especially for handwritten numeral recognition, is presented. Experimental results based on a bidirectional HSOL network indicated that the method is robust in terms of variations, deformations, and corruption, achieving about 99% recognition rate for the test patterns.<>