PM2.5 prediction with Recurrent Neural Networks and Data Augmentation

Anibal Flores, José Valeriano-Zapana, Victor Yana-Mamani, Hugo Tito-Chura
{"title":"PM2.5 prediction with Recurrent Neural Networks and Data Augmentation","authors":"Anibal Flores, José Valeriano-Zapana, Victor Yana-Mamani, Hugo Tito-Chura","doi":"10.1109/LA-CCI48322.2021.9769784","DOIUrl":null,"url":null,"abstract":"This paper presents three novel models based on recurrent neural networks (RNN) such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) for PM2.5 prediction with data augmentation (DA). The data augmentation technique is based on linear interpolation, it allows to find a linear function with each pair of items from the original time series. A space parameter allows to define the number of synthetic items to be generated, with this is possible to enlarge the original time series and improve the precision of the regression models. The baseline models as GRU, LSTM and GRU+LSTM got regular and bad prediction results, while the same ones with data augmentation as DA+GRU, DA+LSTM and DA+GRU+LSTM got excellent predictions showing the superiority of the proposals models. Likewise, according to the Mean Absolute Percentage Error (MAPE), the data augmentation allows to improve a regular GRU model by 18.6288% and bad models as LSTM and GRU+LSTM by 21.7683% and 31.0092% respectively.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents three novel models based on recurrent neural networks (RNN) such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) for PM2.5 prediction with data augmentation (DA). The data augmentation technique is based on linear interpolation, it allows to find a linear function with each pair of items from the original time series. A space parameter allows to define the number of synthetic items to be generated, with this is possible to enlarge the original time series and improve the precision of the regression models. The baseline models as GRU, LSTM and GRU+LSTM got regular and bad prediction results, while the same ones with data augmentation as DA+GRU, DA+LSTM and DA+GRU+LSTM got excellent predictions showing the superiority of the proposals models. Likewise, according to the Mean Absolute Percentage Error (MAPE), the data augmentation allows to improve a regular GRU model by 18.6288% and bad models as LSTM and GRU+LSTM by 21.7683% and 31.0092% respectively.
基于递归神经网络和数据增强的PM2.5预测
本文提出了长短期记忆(LSTM)和门控循环单元(GRU)三种基于循环神经网络(RNN)的PM2.5数据增强(DA)预测模型。数据增强技术是基于线性插值的,它允许从原始时间序列中找到每对项目的线性函数。空间参数允许定义要生成的合成项的数量,这可以扩大原始时间序列并提高回归模型的精度。基线模型GRU、LSTM和GRU+LSTM的预测结果规律较差,而数据增强模型DA+GRU、DA+LSTM和DA+GRU+LSTM的预测结果良好,显示了建议模型的优越性。同样,根据平均绝对百分比误差(MAPE),数据增强可以使常规GRU模型的改进率提高18.6288%,LSTM和GRU+LSTM等不良模型的改进率分别提高21.7683%和31.0092%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信