Genomic Privacy Metrics: A Systematic Comparison

Isabel Wagner
{"title":"Genomic Privacy Metrics: A Systematic Comparison","authors":"Isabel Wagner","doi":"10.1109/SPW.2015.15","DOIUrl":null,"url":null,"abstract":"The human genome uniquely identifies, and contains highly sensitive information about, individuals. This creates a high potential for misuse of genomic data (e.g., Genetic discrimination). This paper investigates how genomic privacy can be measured in scenarios where an adversary aims to infer a person's genome by constructing probability distributions on the values of genetic variations. Specifically, we investigate 22 privacy metrics using adversaries of different strengths, and uncover problems with several metrics that have previously been used for genomic privacy. We then give suggestions on metric selection, and illustrate the process with a case study on Alzheimer's disease.","PeriodicalId":301535,"journal":{"name":"2015 IEEE Security and Privacy Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The human genome uniquely identifies, and contains highly sensitive information about, individuals. This creates a high potential for misuse of genomic data (e.g., Genetic discrimination). This paper investigates how genomic privacy can be measured in scenarios where an adversary aims to infer a person's genome by constructing probability distributions on the values of genetic variations. Specifically, we investigate 22 privacy metrics using adversaries of different strengths, and uncover problems with several metrics that have previously been used for genomic privacy. We then give suggestions on metric selection, and illustrate the process with a case study on Alzheimer's disease.
基因组隐私度量:一个系统的比较
人类基因组独特地识别并包含有关个体的高度敏感信息。这就产生了滥用基因组数据(例如,基因歧视)的高可能性。本文研究了在对手旨在通过构建遗传变异值的概率分布来推断一个人的基因组的情况下,如何测量基因组隐私。具体而言,我们使用不同优势的对手调查了22个隐私指标,并发现了先前用于基因组隐私的几个指标的问题。然后,我们给出了度量选择的建议,并以阿尔茨海默病的案例研究说明了这一过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信