{"title":"Emotionally-Informed Models for Detecting Moments of Change and Suicide Risk Levels in Longitudinal Social Media Data","authors":"Ulya Bayram, Lamia Benhiba","doi":"10.18653/v1/2022.clpsych-1.20","DOIUrl":null,"url":null,"abstract":"In this shared task, we focus on detecting mental health signals in Reddit users’ posts through two main challenges: A) capturing mood changes (anomalies) from the longitudinal set of posts (called timelines), and B) assessing the users’ suicide risk-levels. Our approaches leverage emotion recognition on linguistic content by computing emotion/sentiment scores using pre-trained BERTs on users’ posts and feeding them to machine learning models, including XGBoost, Bi-LSTM, and logistic regression. For Task-A, we detect longitudinal anomalies using a sequence-to-sequence (seq2seq) autoencoder and capture regions of mood deviations. For Task-B, our two models utilize the BERT emotion/sentiment scores. The first computes emotion bandwidths and merges them with n-gram features, and employs logistic regression to detect users’ suicide risk levels. The second model predicts suicide risk on the timeline level using a Bi-LSTM on Task-A results and sentiment scores. Our results outperformed most participating teams and ranked in the top three in Task-A. In Task-B, our methods surpass all others and return the best macro and micro F1 scores.","PeriodicalId":107109,"journal":{"name":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.clpsych-1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this shared task, we focus on detecting mental health signals in Reddit users’ posts through two main challenges: A) capturing mood changes (anomalies) from the longitudinal set of posts (called timelines), and B) assessing the users’ suicide risk-levels. Our approaches leverage emotion recognition on linguistic content by computing emotion/sentiment scores using pre-trained BERTs on users’ posts and feeding them to machine learning models, including XGBoost, Bi-LSTM, and logistic regression. For Task-A, we detect longitudinal anomalies using a sequence-to-sequence (seq2seq) autoencoder and capture regions of mood deviations. For Task-B, our two models utilize the BERT emotion/sentiment scores. The first computes emotion bandwidths and merges them with n-gram features, and employs logistic regression to detect users’ suicide risk levels. The second model predicts suicide risk on the timeline level using a Bi-LSTM on Task-A results and sentiment scores. Our results outperformed most participating teams and ranked in the top three in Task-A. In Task-B, our methods surpass all others and return the best macro and micro F1 scores.