A New Method of Extracting Chinese Term Based on Open Corpus

Jianzhou Liu, Xiongkai Shao
{"title":"A New Method of Extracting Chinese Term Based on Open Corpus","authors":"Jianzhou Liu, Xiongkai Shao","doi":"10.1109/IWISA.2010.5473325","DOIUrl":null,"url":null,"abstract":"Automatic Chinese Term Extraction is an important issue in Natural Language Processing. This paper has proposed a new method to extract terms from open corpus. We have used two improved traditional parameters: mutual information and log-likelihood ratio, and have increased the precision of the method to 75.4%. The results of the research indicate that this method is more efficient and robust than previous term-extraction methods.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automatic Chinese Term Extraction is an important issue in Natural Language Processing. This paper has proposed a new method to extract terms from open corpus. We have used two improved traditional parameters: mutual information and log-likelihood ratio, and have increased the precision of the method to 75.4%. The results of the research indicate that this method is more efficient and robust than previous term-extraction methods.
基于开放语料库的汉语术语提取新方法
中文术语自动抽取是自然语言处理中的一个重要问题。提出了一种从开放语料库中提取术语的新方法。我们使用了两个改进的传统参数:互信息和对数似然比,并将方法的精度提高到75.4%。研究结果表明,该方法比以往的术语提取方法具有更高的效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信