Deep Learning based Approach for Fast, Effective Visualization of Voluminous Gridded Spatial Observations

Paahuni Khandelwal, M. Warushavithana, S. Pallickara, S. Pallickara
{"title":"Deep Learning based Approach for Fast, Effective Visualization of Voluminous Gridded Spatial Observations","authors":"Paahuni Khandelwal, M. Warushavithana, S. Pallickara, S. Pallickara","doi":"10.1109/CCGridW59191.2023.00070","DOIUrl":null,"url":null,"abstract":"Gridded spatial datasets arise naturally in environmental, climatic, meteorological, and ecological settings. Each grid point encapsulates a vector of variables representing different measures of interest. Gridded datasets tend to be voluminous since they encapsulate observations for long timescales. Visualizing such datasets poses significant challenges stemming from the need to preserve interactivity, manage I/O overheads, and cope with data volumes. Here we present our methodology to significantly alleviate I/O requirements by leveraging deep neural network-based models.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gridded spatial datasets arise naturally in environmental, climatic, meteorological, and ecological settings. Each grid point encapsulates a vector of variables representing different measures of interest. Gridded datasets tend to be voluminous since they encapsulate observations for long timescales. Visualizing such datasets poses significant challenges stemming from the need to preserve interactivity, manage I/O overheads, and cope with data volumes. Here we present our methodology to significantly alleviate I/O requirements by leveraging deep neural network-based models.
基于深度学习的海量网格空间观测数据快速有效可视化方法
网格空间数据集在环境、气候、气象和生态设置中自然产生。每个网格点封装了代表不同感兴趣度量的变量向量。网格数据集往往体积庞大,因为它们封装了长时间尺度的观测结果。可视化这些数据集带来了巨大的挑战,因为需要保持交互性、管理I/O开销和处理数据量。在这里,我们提出了通过利用基于深度神经网络的模型来显著缓解I/O需求的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信