Zero-shot image classification based on attribute

Wei Zhang, Wenbai Chen, Xiangfeng Chen, Hu Han
{"title":"Zero-shot image classification based on attribute","authors":"Wei Zhang, Wenbai Chen, Xiangfeng Chen, Hu Han","doi":"10.1109/SPAC.2017.8304245","DOIUrl":null,"url":null,"abstract":"In the image classification task, traditional model can only recognize annotated image samples, but class labels can't involve all the object categories. In order to reduce the dependence on the labels and recognize unannotated object samples, this paper proposes zero-shot image classification based on attribute. The binary attribute is used as the intermediate knowledge to migrate learned knowledge from training samples domain to test samples domain. Using the classification model of the multi-loss function based on ResNet-50 to predict the object attributes. Then, using an attribute matrix to represent the correspondence between the object class and the attribute. Finally, the result of attribute prediction is combined with the prior knowledge of the attribute matrix to get the category. Compared with the traditional image classification method, the attribute learning model is applied to the zero-shot image classification. The experimental data show that the method improves the recognition accuracy of the image and improves the flexibility of the image classification task, which lays the foundation for the multi-source domain adaptation induction problem.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the image classification task, traditional model can only recognize annotated image samples, but class labels can't involve all the object categories. In order to reduce the dependence on the labels and recognize unannotated object samples, this paper proposes zero-shot image classification based on attribute. The binary attribute is used as the intermediate knowledge to migrate learned knowledge from training samples domain to test samples domain. Using the classification model of the multi-loss function based on ResNet-50 to predict the object attributes. Then, using an attribute matrix to represent the correspondence between the object class and the attribute. Finally, the result of attribute prediction is combined with the prior knowledge of the attribute matrix to get the category. Compared with the traditional image classification method, the attribute learning model is applied to the zero-shot image classification. The experimental data show that the method improves the recognition accuracy of the image and improves the flexibility of the image classification task, which lays the foundation for the multi-source domain adaptation induction problem.
基于属性的零拍图像分类
在图像分类任务中,传统模型只能识别带注释的图像样本,而类标签不能涵盖所有的对象类别。为了减少对标签的依赖,识别未标注的目标样本,本文提出了基于属性的零拍摄图像分类方法。利用二元属性作为中间知识,将学习到的知识从训练样本域迁移到测试样本域。采用基于ResNet-50的多重损失函数分类模型对目标属性进行预测。然后,使用属性矩阵来表示对象类和属性之间的对应关系。最后,将属性预测结果与属性矩阵的先验知识相结合,得到类别。与传统的图像分类方法相比,将属性学习模型应用于零拍摄图像分类。实验数据表明,该方法提高了图像的识别精度,提高了图像分类任务的灵活性,为多源域自适应归纳问题奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信