Fusion of infrared and visible images using multiscale morphology

Cecilia Araceli Saravia, Magali E. Mereles Peralta, Julio César Mello Román, José Luis Vázquez Noguera, H. Legal-Ayala
{"title":"Fusion of infrared and visible images using multiscale morphology","authors":"Cecilia Araceli Saravia, Magali E. Mereles Peralta, Julio César Mello Román, José Luis Vázquez Noguera, H. Legal-Ayala","doi":"10.1109/CLEI47609.2019.235085","DOIUrl":null,"url":null,"abstract":"Extracting useful image features and preserving details effectively is a crucial part of fusion of images. Infrared images can distinguish objects from their background based on the difference in radiation. In the other hand, visible images can provide textured details consistent with the human visual system. The fusion of these two types of images can combine the advantages of thermal radiation information in infrared images and detailed texture information in visible images. In this work, we propose an algorithm of fusion of infrared and visible images using the multiscale top-hat transformation. The extraction of bright and dark regions from the images is done using two structuring elements. This algorithm provides significantly better results in contrast, brightness and texture than other state-of-theart algorithms.","PeriodicalId":216193,"journal":{"name":"2019 XLV Latin American Computing Conference (CLEI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 XLV Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI47609.2019.235085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Extracting useful image features and preserving details effectively is a crucial part of fusion of images. Infrared images can distinguish objects from their background based on the difference in radiation. In the other hand, visible images can provide textured details consistent with the human visual system. The fusion of these two types of images can combine the advantages of thermal radiation information in infrared images and detailed texture information in visible images. In this work, we propose an algorithm of fusion of infrared and visible images using the multiscale top-hat transformation. The extraction of bright and dark regions from the images is done using two structuring elements. This algorithm provides significantly better results in contrast, brightness and texture than other state-of-theart algorithms.
基于多尺度形态学的红外与可见光图像融合
提取有用的图像特征并有效地保留细节是图像融合的关键部分。红外图像可以根据辐射的差异来区分物体和背景。另一方面,可见图像可以提供与人类视觉系统一致的纹理细节。这两类图像的融合可以结合红外图像的热辐射信息和可见光图像的详细纹理信息的优点。在这项工作中,我们提出了一种基于多尺度顶帽变换的红外和可见光图像融合算法。从图像中提取亮区和暗区使用两个结构元素。该算法在对比度、亮度和纹理方面明显优于其他先进算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信