Spectral factorization in the disk algebra

H. Boche **, V. Pohl
{"title":"Spectral factorization in the disk algebra","authors":"H. Boche **, V. Pohl","doi":"10.1080/02781070500044460","DOIUrl":null,"url":null,"abstract":"Every strictly positive function f, given on the unit circle of the complex plane, defines an outer function. This article investigates the behavior of these outer functions on the boundary of the unit disk. It is shown that even if the given function f on the boundary is continuous, the corresponding outer function is generally not continuous on the closure of the unit disk. Moreover, any subset E∈ [-π ,π) of Lebesgue measure zero is a valid divergence set for outer functions of some continuous functions f. These results are applied to study the solutions of non-linear boundary-value problems and the factorization of spectral density functions.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500044460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Every strictly positive function f, given on the unit circle of the complex plane, defines an outer function. This article investigates the behavior of these outer functions on the boundary of the unit disk. It is shown that even if the given function f on the boundary is continuous, the corresponding outer function is generally not continuous on the closure of the unit disk. Moreover, any subset E∈ [-π ,π) of Lebesgue measure zero is a valid divergence set for outer functions of some continuous functions f. These results are applied to study the solutions of non-linear boundary-value problems and the factorization of spectral density functions.
磁盘代数中的谱分解
复平面单位圆上的每一个严格正函数f,都定义了一个外函数。本文研究了这些外函数在单位圆盘边界上的行为。证明了即使给定函数f在边界上是连续的,其对应的外函数在单位圆盘的闭包上一般是不连续的。此外,Lebesgue测度0的任意子集E∈[-π,π)是某些连续函数f的外函数的有效散度集。这些结果应用于非线性边值问题的解和谱密度函数的分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信