Phase retrieval and time-frequency methods in the measurement of ultrasnort laser pulses

K. Delong, D. Fittinghoff, C. Ladera, R. Trebino
{"title":"Phase retrieval and time-frequency methods in the measurement of ultrasnort laser pulses","authors":"K. Delong, D. Fittinghoff, C. Ladera, R. Trebino","doi":"10.1364/srs.1995.rtuc1","DOIUrl":null,"url":null,"abstract":"The recovery of an optical field with respect to position when only the intensity can be measured is an important problem in image science. In this case a priori information in the form of constraints can be applied and advantage can be taken of the inherently two-dimensional nature of the problem in order to reconstruct the full complex field from the available information. A similar recovery problem also arises with temporally varying data. One such case is the measurement of the complete time-dependent intensity and phase of an ultrashort laser pulse. This problem is particularly difficult for two reasons. First, it is inherently one-dimensional, so phase-retrieval methods, so successful for the spatial problem, do not directly apply. Second, such pulses are shorter than all possible measuring devices, so even the intensity cannot be measured. Traditionally, optical scientists working with ultrashort laser pulses have had only partial diagnostics, typically the intensity autocorrelation and the spectral intensity of the pulse. These diagnostics are not enough to completely characterize the laser pulse.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1995.rtuc1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recovery of an optical field with respect to position when only the intensity can be measured is an important problem in image science. In this case a priori information in the form of constraints can be applied and advantage can be taken of the inherently two-dimensional nature of the problem in order to reconstruct the full complex field from the available information. A similar recovery problem also arises with temporally varying data. One such case is the measurement of the complete time-dependent intensity and phase of an ultrashort laser pulse. This problem is particularly difficult for two reasons. First, it is inherently one-dimensional, so phase-retrieval methods, so successful for the spatial problem, do not directly apply. Second, such pulses are shorter than all possible measuring devices, so even the intensity cannot be measured. Traditionally, optical scientists working with ultrashort laser pulses have had only partial diagnostics, typically the intensity autocorrelation and the spectral intensity of the pulse. These diagnostics are not enough to completely characterize the laser pulse.
超声激光脉冲测量中的相位恢复和时频方法
当光场只能测量光强时,光场相对于位置的恢复是图像科学中的一个重要问题。在这种情况下,可以应用约束形式的先验信息,并且可以利用问题固有的二维性质,以便从可用信息中重建完整的复杂场。对于临时变化的数据,也会出现类似的恢复问题。其中一个例子是测量一个超短激光脉冲的完全随时间变化的强度和相位。由于两个原因,这个问题特别困难。首先,它本质上是一维的,所以相位检索方法,对于空间问题并不直接适用。其次,这种脉冲比所有可能的测量设备都要短,所以即使是强度也无法测量。传统上,研究超短激光脉冲的光学科学家只有部分诊断,通常是强度自相关和脉冲的光谱强度。这些诊断不足以完全表征激光脉冲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信