A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest

Gabriel Santos Barbosa, Leonardo da Silva Costa, Ajalmar Rêgo da Rocha Neto
{"title":"A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest","authors":"Gabriel Santos Barbosa, Leonardo da Silva Costa, Ajalmar Rêgo da Rocha Neto","doi":"10.1109/bracis.2018.00011","DOIUrl":null,"url":null,"abstract":"Optimum-Path Forest (OPF) is a graph-based supervised classifier that has achieved remarkable performances in many applications. OPF has many advantages when compared to other supervised classifiers, since it is free of parameters, achieves zero classification errors on the training set without overfitting, handles multiple classes without modifications or extensions, and does not make assumptions about the shape and separability of the classes. However, one drawback of the OPF classifier is the fact that its classification computational cost grows proportionally to the size of the training set. To overcome this issue, we propose a novel method based on genetic algorithms (GAs) to prune irrelevant training samples and still preserve or even improve accuracy in OPF classification. We validate the method using public datasets obtained from UCI repository.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bracis.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Optimum-Path Forest (OPF) is a graph-based supervised classifier that has achieved remarkable performances in many applications. OPF has many advantages when compared to other supervised classifiers, since it is free of parameters, achieves zero classification errors on the training set without overfitting, handles multiple classes without modifications or extensions, and does not make assumptions about the shape and separability of the classes. However, one drawback of the OPF classifier is the fact that its classification computational cost grows proportionally to the size of the training set. To overcome this issue, we propose a novel method based on genetic algorithms (GAs) to prune irrelevant training samples and still preserve or even improve accuracy in OPF classification. We validate the method using public datasets obtained from UCI repository.
一种基于遗传算法的最优路径森林修剪新方法
最优路径森林(OPF)是一种基于图的监督分类器,在许多应用中取得了显著的成绩。与其他监督分类器相比,OPF具有许多优点,因为它没有参数,在训练集上实现零分类误差而不会过度拟合,处理多个类而不需要修改或扩展,并且不假设类的形状和可分性。然而,OPF分类器的一个缺点是其分类计算成本与训练集的大小成比例地增长。为了克服这一问题,我们提出了一种基于遗传算法(GAs)的新方法来修剪不相关的训练样本,同时仍然保持甚至提高OPF分类的准确性。我们使用从UCI存储库获得的公共数据集验证了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信