An approach for proving lower bounds: solution of Gilbert-Pollak's conjecture on Steiner ratio

D. Du, F. Hwang
{"title":"An approach for proving lower bounds: solution of Gilbert-Pollak's conjecture on Steiner ratio","authors":"D. Du, F. Hwang","doi":"10.1109/FSCS.1990.89526","DOIUrl":null,"url":null,"abstract":"A family of finitely many continuous functions on a polytope X, namely (g/sub i/(x))/sub i in I/, is considered, and the problem of minimizing the function f(x)=max/sub i in I/g/sub i/(x) on X is treated. It is shown that if every g/sub i/(x) is a concave function, then the minimum value of f(x) is achieved at finitely many special points in X. As an application, a long-standing problem about Steiner minimum trees and minimum spanning trees is solved. In particular, if P is a set of n points on the Euclidean plane and L/sub s/(P) and L/sub m/(P) denote the lengths of a Steiner minimum tree and a minimum spanning tree on P, respectively, it is proved that, for any P, L/sub S/(P)>or= square root 3L/sub m/(P)/2, as conjectured by E.N. Gilbert and H.O. Pollak (1968).<<ETX>>","PeriodicalId":271949,"journal":{"name":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSCS.1990.89526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

A family of finitely many continuous functions on a polytope X, namely (g/sub i/(x))/sub i in I/, is considered, and the problem of minimizing the function f(x)=max/sub i in I/g/sub i/(x) on X is treated. It is shown that if every g/sub i/(x) is a concave function, then the minimum value of f(x) is achieved at finitely many special points in X. As an application, a long-standing problem about Steiner minimum trees and minimum spanning trees is solved. In particular, if P is a set of n points on the Euclidean plane and L/sub s/(P) and L/sub m/(P) denote the lengths of a Steiner minimum tree and a minimum spanning tree on P, respectively, it is proved that, for any P, L/sub S/(P)>or= square root 3L/sub m/(P)/2, as conjectured by E.N. Gilbert and H.O. Pollak (1968).<>
下界的一种证明方法:关于斯坦纳比的Gilbert-Pollak猜想的解
考虑多面体X上的有限多个连续函数族(g/下标i/(X))/下标i在i/(X)上,并处理函数f(X)=max/下标i在i/ g/下标i/(X)上在X上的极小化问题。证明了如果每个g/下标i/(x)都是凹函数,则f(x)在x中有有限多个特殊点处达到最小值。作为一个应用,解决了一个长期存在的关于斯坦纳最小树和最小生成树的问题。特别地,如果P是欧氏平面上n个点的集合,且L/下标s/(P)和L/下标m/(P)分别表示P上的斯坦纳最小树和最小生成树的长度,则证明了对于任意P, L/下标s/(P) >或=根号3L/下标m/(P)/2,如E.N. Gilbert和H.O. Pollak(1968)的推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信