A Thermal Model for Reburning Fuel Injectors in Glass Furnaces

L. Swanson, R. Koppang
{"title":"A Thermal Model for Reburning Fuel Injectors in Glass Furnaces","authors":"L. Swanson, R. Koppang","doi":"10.1115/imece2000-1555","DOIUrl":null,"url":null,"abstract":"\n A quasi-steady multi-mode heat-transfer model for retraining fuel injectors in glass furnaces has been developed that predicts the effect of geometry, furnace heat source and heat sink temperatures, radial and axial injector wall conduction, and coolant flow rate on the injector wall temperature distribution. The model imposes a radiation boundary condition at the outlet tip of the injector, which acts as a heat source. A parametric study has been conducted to investigate effects that the furnace gas temperature, reburning methane fuel and purge-air flow rates, and furnace wall temperature have on the injector wall temperature distribution. For nominal operating conditions, highly nonlinear temperature distributions were observed throughout the injector. Operation with methane as the coolant produced an extremely large temperature gradient near the injector tip that could cause excessive thermal stresses in the injector wall. The results also showed that nominal injector operating conditions should prevent alkali deposition at the injector tip and produce injector/metallic disconnect temperatures well below the initial deformation temperature for stainless steel.","PeriodicalId":221080,"journal":{"name":"Heat Transfer: Volume 5","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A quasi-steady multi-mode heat-transfer model for retraining fuel injectors in glass furnaces has been developed that predicts the effect of geometry, furnace heat source and heat sink temperatures, radial and axial injector wall conduction, and coolant flow rate on the injector wall temperature distribution. The model imposes a radiation boundary condition at the outlet tip of the injector, which acts as a heat source. A parametric study has been conducted to investigate effects that the furnace gas temperature, reburning methane fuel and purge-air flow rates, and furnace wall temperature have on the injector wall temperature distribution. For nominal operating conditions, highly nonlinear temperature distributions were observed throughout the injector. Operation with methane as the coolant produced an extremely large temperature gradient near the injector tip that could cause excessive thermal stresses in the injector wall. The results also showed that nominal injector operating conditions should prevent alkali deposition at the injector tip and produce injector/metallic disconnect temperatures well below the initial deformation temperature for stainless steel.
玻璃炉中再燃喷油器的热模型
建立了玻璃炉再训练喷油器准稳态多模传热模型,预测了几何形状、炉膛热源和散热器温度、喷油器径向和轴向传导以及冷却剂流量对喷油器壁面温度分布的影响。该模型在喷油器的出口端施加辐射边界条件,作为热源。通过参数化研究,考察了炉气温度、再燃甲烷燃料和吹气流量、炉壁温度对喷射器壁面温度分布的影响。在标称工况下,整个喷油器的温度分布高度非线性。当使用甲烷作为冷却剂时,在注入器尖端附近产生了极大的温度梯度,可能会导致注入器壁上产生过大的热应力。结果还表明,标称的喷射器工作条件应防止在喷射器尖端沉积碱,并使喷射器/金属断开温度远低于不锈钢的初始变形温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信