Halting Infectious Disease Spread in Social Network

Zhen-peng Li, Guo-liang Shao
{"title":"Halting Infectious Disease Spread in Social Network","authors":"Zhen-peng Li, Guo-liang Shao","doi":"10.1109/IWCFTA.2009.70","DOIUrl":null,"url":null,"abstract":"We present a hierarchical structure or multi-scales infectious diseases analysis based on meta-population model with heterogenous connectivity and mobility patterns, and study the effect of multi-scales hierarchical connectivity pattern of complex social network on the propagation dynamics of epidemics. The simulation results show that the scale of growth time of outbreaks is inversely proportional to the network degree ¿uctuations within each hierarchies(scales). We also provide the analysis of infected evolution density versus hierarchical degree and time scale. This paper presents an approach to understand the disease spreading in large transportation network or virus transmission in the Internet. In addition, our study offer some useful measures to control and eradicate epidemic or virus within the large scale complex network with hierarchical meta-population structure.","PeriodicalId":279256,"journal":{"name":"2009 International Workshop on Chaos-Fractals Theories and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Chaos-Fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2009.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a hierarchical structure or multi-scales infectious diseases analysis based on meta-population model with heterogenous connectivity and mobility patterns, and study the effect of multi-scales hierarchical connectivity pattern of complex social network on the propagation dynamics of epidemics. The simulation results show that the scale of growth time of outbreaks is inversely proportional to the network degree ¿uctuations within each hierarchies(scales). We also provide the analysis of infected evolution density versus hierarchical degree and time scale. This paper presents an approach to understand the disease spreading in large transportation network or virus transmission in the Internet. In addition, our study offer some useful measures to control and eradicate epidemic or virus within the large scale complex network with hierarchical meta-population structure.
阻止传染病在社交网络中的传播
本文提出了一种基于异质性连通性和流动模式的元种群模型的分层结构或多尺度传染病分析方法,研究了复杂社会网络的多尺度分层连通性模式对传染病传播动态的影响。仿真结果表明,疫情的生长时间尺度与各层次(尺度)内的网络波动程度成反比。我们还分析了感染进化密度与分层程度和时间尺度的关系。本文提出了一种理解疾病在大型交通网络中的传播或病毒在互联网中的传播的方法。此外,我们的研究还为控制和根除具有分层元种群结构的大规模复杂网络中的流行病或病毒提供了一些有用的措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信