Automatic optimization of data perturbation distributions for multi-style training in speech recognition

Mortaza Doulaty, R. Rose, O. Siohan
{"title":"Automatic optimization of data perturbation distributions for multi-style training in speech recognition","authors":"Mortaza Doulaty, R. Rose, O. Siohan","doi":"10.1109/SLT.2016.7846240","DOIUrl":null,"url":null,"abstract":"Speech recognition performance using deep neural network based acoustic models is known to degrade when the acoustic environment and the speaker population in the target utterances are significantly different from the conditions represented in the training data. To address these mismatched scenarios, multi-style training (MTR) has been used to perturb utterances in an existing uncorrupted and potentially mismatched training speech corpus to better match target domain utterances. This paper addresses the problem of determining the distribution of perturbation levels for a given set of perturbation types that best matches the target speech utterances. An approach is presented that, given a small set of utterances from a target domain, automatically identifies an empirical distribution of perturbation levels that can be applied to utterances in an existing training set. Distributions are estimated for perturbation types that include acoustic background environments, reverberant room configurations, and speaker related variation like frequency and temporal warping. The end goal is for the resulting perturbed training set to characterize the variability in the target domain and thereby optimize ASR performance. An experimental study is performed to evaluate the impact of this approach on ASR performance when the target utterances are taken from a simulated far-field acoustic environment.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Speech recognition performance using deep neural network based acoustic models is known to degrade when the acoustic environment and the speaker population in the target utterances are significantly different from the conditions represented in the training data. To address these mismatched scenarios, multi-style training (MTR) has been used to perturb utterances in an existing uncorrupted and potentially mismatched training speech corpus to better match target domain utterances. This paper addresses the problem of determining the distribution of perturbation levels for a given set of perturbation types that best matches the target speech utterances. An approach is presented that, given a small set of utterances from a target domain, automatically identifies an empirical distribution of perturbation levels that can be applied to utterances in an existing training set. Distributions are estimated for perturbation types that include acoustic background environments, reverberant room configurations, and speaker related variation like frequency and temporal warping. The end goal is for the resulting perturbed training set to characterize the variability in the target domain and thereby optimize ASR performance. An experimental study is performed to evaluate the impact of this approach on ASR performance when the target utterances are taken from a simulated far-field acoustic environment.
语音识别中多风格训练数据扰动分布的自动优化
当目标话语中的声环境和说话人群体与训练数据中表示的条件显著不同时,使用基于深度神经网络的声学模型的语音识别性能会下降。为了解决这些不匹配的情况,多风格训练(MTR)被用于干扰现有的未损坏的和可能不匹配的训练语音语料库中的话语,以更好地匹配目标域的话语。本文解决的问题是确定最适合目标语音的给定扰动类型集的扰动水平分布。提出了一种方法,给定一小组来自目标域的话语,自动识别可应用于现有训练集中的话语的扰动水平的经验分布。估计扰动类型的分布,包括声学背景环境,混响室配置和扬声器相关的变化,如频率和时间翘曲。最终目标是使得到的扰动训练集表征目标域的可变性,从而优化ASR性能。我们进行了一项实验研究,以评估当目标话语来自模拟远场声环境时,该方法对ASR性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信