Deterministic networks for image estimation using a penalty function method

Anand Rangarajan, T. Simchony, R. Chellappa
{"title":"Deterministic networks for image estimation using a penalty function method","authors":"Anand Rangarajan, T. Simchony, R. Chellappa","doi":"10.1109/IJCNN.1989.118495","DOIUrl":null,"url":null,"abstract":"Summary form only given. A novel technique for image estimation which preserves discontinuities is presented. Gibbs distributions are used for image representations. These distributions also incorporate unobserved discontinuity variables or line processes. The degradation model is also Gibbs, which yields a posterior Gibbs distribution. The authors are interested in the maximum a posteriori (MAP) estimate. This reduces to finding the minimum of a Hamiltonian (energy function). The authors use a penalty function approach to solve the problem. This permits identifying the line processes as neurons with a graded response. The penalty function method also permits incorporating 'hard' and 'soft' constraints into the problem. These typically involve constraints on line endings, inhibition of adjacent parallel lines, preservation of line continuity of corners, etc. The authors propose two algorithms to solve this problem; the conjugate gradient (CG) and the iterated conditional mode (ICM) algorithms. Both algorithms are amenable to implementation on 'hybrid' networks.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. A novel technique for image estimation which preserves discontinuities is presented. Gibbs distributions are used for image representations. These distributions also incorporate unobserved discontinuity variables or line processes. The degradation model is also Gibbs, which yields a posterior Gibbs distribution. The authors are interested in the maximum a posteriori (MAP) estimate. This reduces to finding the minimum of a Hamiltonian (energy function). The authors use a penalty function approach to solve the problem. This permits identifying the line processes as neurons with a graded response. The penalty function method also permits incorporating 'hard' and 'soft' constraints into the problem. These typically involve constraints on line endings, inhibition of adjacent parallel lines, preservation of line continuity of corners, etc. The authors propose two algorithms to solve this problem; the conjugate gradient (CG) and the iterated conditional mode (ICM) algorithms. Both algorithms are amenable to implementation on 'hybrid' networks.<>
使用惩罚函数方法进行图像估计的确定性网络
只提供摘要形式。提出了一种保留不连续点的图像估计新方法。吉布斯分布用于图像表示。这些分布还包括未观察到的不连续变量或线状过程。退化模型也是Gibbs模型,它产生一个后验Gibbs分布。作者感兴趣的是最大后验估计(MAP)。这简化为寻找哈密顿函数(能量函数)的最小值。作者使用罚函数方法来解决这个问题。这允许将线过程识别为具有分级响应的神经元。罚函数法还允许将“硬”约束和“软”约束合并到问题中。这些通常包括对线尾的约束,相邻平行线的抑制,保持拐角的线连续性等。作者提出了两种算法来解决这个问题;共轭梯度(CG)和迭代条件模式(ICM)算法。这两种算法都可以在“混合”网络上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信