{"title":"Bayes Estimation in the Hierarchical Multinomial Probit Model","authors":"Harunori Mori","doi":"10.14490/JJSS.44.135","DOIUrl":null,"url":null,"abstract":"We consider a complete hierarchical multinomial probit (HMNP) model in which both the regression-coefficient vector and the covariance matrix are assumed to have hierarchical structure and propose an MCMC algorithm for numerically computing the Bayes estimates of the parameters. We show by simulation studies that the covariance matrix is estimated with higher accuracy using the method proposed in this paper than that using an HMNP model in which the covariance matrix is not assumed to have hierarchical structure.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.44.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider a complete hierarchical multinomial probit (HMNP) model in which both the regression-coefficient vector and the covariance matrix are assumed to have hierarchical structure and propose an MCMC algorithm for numerically computing the Bayes estimates of the parameters. We show by simulation studies that the covariance matrix is estimated with higher accuracy using the method proposed in this paper than that using an HMNP model in which the covariance matrix is not assumed to have hierarchical structure.