Parallel architectures for the kNN classifier -- design of soft IP cores and FPGA implementations

I. Stamoulias, E. Manolakos
{"title":"Parallel architectures for the kNN classifier -- design of soft IP cores and FPGA implementations","authors":"I. Stamoulias, E. Manolakos","doi":"10.1145/2514641.2514649","DOIUrl":null,"url":null,"abstract":"We designed a variety of k-nearest-neighbor parallel architectures for FPGAs in the form of parameterizable soft IP cores. We show that they can be used to solve large classification problems with thousands of training vectors, or thousands of vector dimensions using a single FPGA, and achieve very high throughput. They can be used to flexibly synthesize architectures that also cover: 1NN classification (vector quantization), multishot queries (with different k), LOOCV cross-validation, and compare favorably to GPU implementations. To the best of our knowledge this is the first attempt to design flexible IP cores for the popular kNN classifier.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2514641.2514649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

We designed a variety of k-nearest-neighbor parallel architectures for FPGAs in the form of parameterizable soft IP cores. We show that they can be used to solve large classification problems with thousands of training vectors, or thousands of vector dimensions using a single FPGA, and achieve very high throughput. They can be used to flexibly synthesize architectures that also cover: 1NN classification (vector quantization), multishot queries (with different k), LOOCV cross-validation, and compare favorably to GPU implementations. To the best of our knowledge this is the first attempt to design flexible IP cores for the popular kNN classifier.
kNN分类器的并行架构——软IP核的设计和FPGA实现
我们以可参数化软IP核的形式为fpga设计了多种k近邻并行架构。我们表明,它们可以用于使用单个FPGA解决具有数千个训练向量或数千个向量维的大型分类问题,并实现非常高的吞吐量。它们可用于灵活地综合架构,这些架构还包括:1NN分类(矢量量化)、多镜头查询(不同k)、LOOCV交叉验证,并且与GPU实现相比具有优势。据我们所知,这是第一次尝试为流行的kNN分类器设计灵活的IP核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信