Learning from large dataset: segmentation of capsule endoscopy videos

Xiaohui Yuan, B. Giritharan, Sandeep Panchakarla
{"title":"Learning from large dataset: segmentation of capsule endoscopy videos","authors":"Xiaohui Yuan, B. Giritharan, Sandeep Panchakarla","doi":"10.1504/IJFIPM.2012.050417","DOIUrl":null,"url":null,"abstract":"Reviewing video of capsule endoscopy is a tedious work that takes hours. Hence, efficient and scalable approaches are needed to automate the process of large dataset and be able to refine the model given new examples. This paper presents an incremental SVM to learn from large dataset with dynamic patterns. Our method extends the reduced convex hull concept and defines the approximate skin segments of convex hulls. Experiments were conducted using synthetic data set, real–world data sets, and CE videos. Our results demonstrated highly competitive performance that requires much less resource, which cast new light on learning with limited resource.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2012.050417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Reviewing video of capsule endoscopy is a tedious work that takes hours. Hence, efficient and scalable approaches are needed to automate the process of large dataset and be able to refine the model given new examples. This paper presents an incremental SVM to learn from large dataset with dynamic patterns. Our method extends the reduced convex hull concept and defines the approximate skin segments of convex hulls. Experiments were conducted using synthetic data set, real–world data sets, and CE videos. Our results demonstrated highly competitive performance that requires much less resource, which cast new light on learning with limited resource.
从大数据集学习:胶囊内窥镜视频的分割
回顾胶囊内窥镜检查的视频是一项耗时数小时的乏味工作。因此,需要高效和可扩展的方法来自动化大型数据集的处理过程,并能够在给定新示例的情况下改进模型。提出了一种基于增量支持向量机的基于动态模式的大数据学习方法。该方法扩展了简化凸包的概念,定义了凸包的近似蒙皮段。实验使用合成数据集、真实数据集和CE视频进行。我们的研究结果显示,高竞争力的表现需要更少的资源,这为有限资源的学习提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信