{"title":"Predicting Online Performance of News Recommender Systems Through Richer Evaluation Metrics","authors":"Andrii Maksai, Florent Garcin, B. Faltings","doi":"10.1145/2792838.2800184","DOIUrl":null,"url":null,"abstract":"We investigate how metrics that can be measured offline can be used to predict the online performance of recommender systems, thus avoiding costly A-B testing. In addition to accuracy metrics, we combine diversity, coverage, and serendipity metrics to create a new performance model. Using the model, we quantify the trade-off between different metrics and propose to use it to tune the parameters of recommender algorithms without the need for online testing. Another application for the model is a self-adjusting algorithm blend that optimizes a recommender's parameters over time. We evaluate our findings on data and experiments from news websites.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2800184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80
Abstract
We investigate how metrics that can be measured offline can be used to predict the online performance of recommender systems, thus avoiding costly A-B testing. In addition to accuracy metrics, we combine diversity, coverage, and serendipity metrics to create a new performance model. Using the model, we quantify the trade-off between different metrics and propose to use it to tune the parameters of recommender algorithms without the need for online testing. Another application for the model is a self-adjusting algorithm blend that optimizes a recommender's parameters over time. We evaluate our findings on data and experiments from news websites.