Predicting Online Performance of News Recommender Systems Through Richer Evaluation Metrics

Andrii Maksai, Florent Garcin, B. Faltings
{"title":"Predicting Online Performance of News Recommender Systems Through Richer Evaluation Metrics","authors":"Andrii Maksai, Florent Garcin, B. Faltings","doi":"10.1145/2792838.2800184","DOIUrl":null,"url":null,"abstract":"We investigate how metrics that can be measured offline can be used to predict the online performance of recommender systems, thus avoiding costly A-B testing. In addition to accuracy metrics, we combine diversity, coverage, and serendipity metrics to create a new performance model. Using the model, we quantify the trade-off between different metrics and propose to use it to tune the parameters of recommender algorithms without the need for online testing. Another application for the model is a self-adjusting algorithm blend that optimizes a recommender's parameters over time. We evaluate our findings on data and experiments from news websites.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2800184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

We investigate how metrics that can be measured offline can be used to predict the online performance of recommender systems, thus avoiding costly A-B testing. In addition to accuracy metrics, we combine diversity, coverage, and serendipity metrics to create a new performance model. Using the model, we quantify the trade-off between different metrics and propose to use it to tune the parameters of recommender algorithms without the need for online testing. Another application for the model is a self-adjusting algorithm blend that optimizes a recommender's parameters over time. We evaluate our findings on data and experiments from news websites.
通过更丰富的评价指标预测新闻推荐系统的在线性能
我们研究了如何使用离线测量的指标来预测推荐系统的在线性能,从而避免昂贵的A-B测试。除了准确性指标外,我们还将多样性、覆盖率和偶然性指标结合起来,创建了一个新的性能模型。使用该模型,我们量化了不同度量之间的权衡,并建议使用它来调整推荐算法的参数,而无需在线测试。该模型的另一个应用是一种自调整算法,它可以随着时间的推移优化推荐器的参数。我们通过来自新闻网站的数据和实验来评估我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信