Richard Li, Min Du, Hyunseok Chang, S. Mukherjee, E. Eide
{"title":"Deepstitch","authors":"Richard Li, Min Du, Hyunseok Chang, S. Mukherjee, E. Eide","doi":"10.1145/3429885.3429965","DOIUrl":null,"url":null,"abstract":"While distributed application-layer tracing is widely used for performance diagnosis in microservices, its coarse granularity at the service level limits its applicability towards detecting more fine-grained system level issues. To address this problem, cross-layer stitching of tracing information has been proposed. However, all existing cross-layer stitching approaches either require modification of the kernel or need updates in the application-layer tracing library to propagate stitching information, both of which add further complex modifications to existing tracing tools. This paper introduces Deepstitch, a deep learning based approach to stitch cross-layer tracing information without requiring any changes to existing application layer tracing tools. Deepstitch leverages a global view of a distributed application composed of multiple services and learns the global system call sequences across all services involved. This knowledge is then used to stitch system call sequences with service-level traces obtained from a deployed application. Our proof of concept experiments show that the proposed approach successfully maps application-level interaction into the system call sequences and can identify thread-level interactions.","PeriodicalId":205652,"journal":{"name":"Proceedings of the 2020 6th International Workshop on Container Technologies and Container Clouds","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Workshop on Container Technologies and Container Clouds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429885.3429965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
While distributed application-layer tracing is widely used for performance diagnosis in microservices, its coarse granularity at the service level limits its applicability towards detecting more fine-grained system level issues. To address this problem, cross-layer stitching of tracing information has been proposed. However, all existing cross-layer stitching approaches either require modification of the kernel or need updates in the application-layer tracing library to propagate stitching information, both of which add further complex modifications to existing tracing tools. This paper introduces Deepstitch, a deep learning based approach to stitch cross-layer tracing information without requiring any changes to existing application layer tracing tools. Deepstitch leverages a global view of a distributed application composed of multiple services and learns the global system call sequences across all services involved. This knowledge is then used to stitch system call sequences with service-level traces obtained from a deployed application. Our proof of concept experiments show that the proposed approach successfully maps application-level interaction into the system call sequences and can identify thread-level interactions.