An Industrial Visual Surveillance Framework Based on a Pre-Configured Behavior Repertoire: A Practical Approach

Vasilios Anagnostopoulos, Emmanuel Sardis, T. Varvarigou
{"title":"An Industrial Visual Surveillance Framework Based on a Pre-Configured Behavior Repertoire: A Practical Approach","authors":"Vasilios Anagnostopoulos, Emmanuel Sardis, T. Varvarigou","doi":"10.1109/UKSIM.2011.42","DOIUrl":null,"url":null,"abstract":"We provide a practical industrial visual surveillance framework based on the notion of visual trap points. Instead of using the whole machinery of computer vision in order to verify correct workflow execution we re-factor the behavior training module to a pre-configured pool of allowed behaviors. We exploit humans' ability to distinguish tasks and allow for an automated surveillance system to accomplish the surveillance phase. Computer vision methods are used only for the object detection and recognition, and for this reason are re-positioned to the lower levels of an architecture for surveillance systems.","PeriodicalId":161995,"journal":{"name":"2011 UkSim 13th International Conference on Computer Modelling and Simulation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 UkSim 13th International Conference on Computer Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSIM.2011.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We provide a practical industrial visual surveillance framework based on the notion of visual trap points. Instead of using the whole machinery of computer vision in order to verify correct workflow execution we re-factor the behavior training module to a pre-configured pool of allowed behaviors. We exploit humans' ability to distinguish tasks and allow for an automated surveillance system to accomplish the surveillance phase. Computer vision methods are used only for the object detection and recognition, and for this reason are re-positioned to the lower levels of an architecture for surveillance systems.
基于预配置行为库的工业视觉监控框架:一种实用方法
我们提供了一个基于视觉陷阱点概念的实用工业视觉监视框架。我们没有使用计算机视觉的整个机制来验证正确的工作流执行,而是将行为训练模块重构为一个预先配置的允许行为池。我们利用人类区分任务的能力,并允许自动化监视系统完成监视阶段。计算机视觉方法仅用于对象检测和识别,因此被重新定位为监视系统架构的较低层次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信