Thomas Carle, D. Potop-Butucaru, Y. Sorel, D. Lesens
{"title":"From Dataflow Specification to Multiprocessor Partitioned Time-triggered Real-time Implementation","authors":"Thomas Carle, D. Potop-Butucaru, Y. Sorel, D. Lesens","doi":"10.4230/LITES-v002-i002-a001","DOIUrl":null,"url":null,"abstract":"Our objective is to facilitate the development of complex time-triggered systems by automating the allocation and scheduling steps. We show that full automation is possible while taking into account the elements of complexity needed by a complex embedded control system. More precisely, we consider deterministic functional specifications provided (as often in an industrial setting) by means of synchronous data-flow models with multiple modes and multiple relative periods. We first extend this functional model with an original real-time characterization that takes advantage of our time-triggered framework to provide a simpler representation of complex end-to-end flow requirements. We also extend our specifications with additional non-functional properties specifying partitioning, allocation, and preemptability constraints. Then, we provide novel algorithms for the off-line scheduling of these extended specifications onto partitioned time-triggered architectures a la ARINC 653. The main originality of our work is that it takes into account at the same time multiple complexity elements: various types of non-functional properties (real-time, partitioning, allocation, preemptability) and functional specifications with conditional execution and multiple modes. Allocation of time slots/windows to partitions can be fully or partially provided, or synthesized by our tool. Our algorithms allow the automatic allocation and scheduling onto multi-processor (distributed) systems with a global time base, taking into account communication costs. We demonstrate our technique on a model of space flight software system with strong real-time determinism requirements.","PeriodicalId":376325,"journal":{"name":"Leibniz Trans. Embed. Syst.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leibniz Trans. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LITES-v002-i002-a001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Our objective is to facilitate the development of complex time-triggered systems by automating the allocation and scheduling steps. We show that full automation is possible while taking into account the elements of complexity needed by a complex embedded control system. More precisely, we consider deterministic functional specifications provided (as often in an industrial setting) by means of synchronous data-flow models with multiple modes and multiple relative periods. We first extend this functional model with an original real-time characterization that takes advantage of our time-triggered framework to provide a simpler representation of complex end-to-end flow requirements. We also extend our specifications with additional non-functional properties specifying partitioning, allocation, and preemptability constraints. Then, we provide novel algorithms for the off-line scheduling of these extended specifications onto partitioned time-triggered architectures a la ARINC 653. The main originality of our work is that it takes into account at the same time multiple complexity elements: various types of non-functional properties (real-time, partitioning, allocation, preemptability) and functional specifications with conditional execution and multiple modes. Allocation of time slots/windows to partitions can be fully or partially provided, or synthesized by our tool. Our algorithms allow the automatic allocation and scheduling onto multi-processor (distributed) systems with a global time base, taking into account communication costs. We demonstrate our technique on a model of space flight software system with strong real-time determinism requirements.