Automatically Segmenting LifeLog Data into Events

A. Doherty, A. Smeaton
{"title":"Automatically Segmenting LifeLog Data into Events","authors":"A. Doherty, A. Smeaton","doi":"10.1109/WIAMIS.2008.32","DOIUrl":null,"url":null,"abstract":"A personal lifelog of visual information can be very helpful as a human memory aid. The SenseCam, a passively capturing wearable camera, captures an average of 1785 images per day, which equates to over 600000 images per year. So as not to overwhelm users it is necessary to deconstruct this substantial collection of images into digestable chunks of information, i.e. into distinct events or activities. This paper improves on previous work on automatic segmentation of SenseCam images into events by up to 29.2%, primarily through the introduction of intelligent threshold selection techniques, but also through improvements in the selection of normalisation, fusion, and vector distance techniques. Here we use the most extensive dataset ever used in this domain, 271163 images collected by 5 users over a time period of one month with manually groundtruthed events.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"153","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 153

Abstract

A personal lifelog of visual information can be very helpful as a human memory aid. The SenseCam, a passively capturing wearable camera, captures an average of 1785 images per day, which equates to over 600000 images per year. So as not to overwhelm users it is necessary to deconstruct this substantial collection of images into digestable chunks of information, i.e. into distinct events or activities. This paper improves on previous work on automatic segmentation of SenseCam images into events by up to 29.2%, primarily through the introduction of intelligent threshold selection techniques, but also through improvements in the selection of normalisation, fusion, and vector distance techniques. Here we use the most extensive dataset ever used in this domain, 271163 images collected by 5 users over a time period of one month with manually groundtruthed events.
自动将LifeLog数据分割成事件
视觉信息的个人生活日志可以作为人类记忆的辅助工具非常有用。SenseCam是一种被动捕捉可穿戴相机,平均每天拍摄1785张照片,相当于每年拍摄60多万张照片。为了不让用户感到不知所措,有必要将这些大量的图像集合分解为可消化的信息块,即分解为不同的事件或活动。本文将SenseCam图像自动分割成事件的工作改进了29.2%,主要是通过引入智能阈值选择技术,但也通过改进归一化、融合和矢量距离技术的选择。在这里,我们使用了该领域使用过的最广泛的数据集,由5个用户在一个月的时间内收集了271163张图像,其中包含人工捏造的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信