Md. Saiful Islam, W. Rahayu, Chengfei Liu, Tarique Anwar, Bela Stantic
{"title":"Computing Influence of a Product through Uncertain Reverse Skyline","authors":"Md. Saiful Islam, W. Rahayu, Chengfei Liu, Tarique Anwar, Bela Stantic","doi":"10.1145/3085504.3085508","DOIUrl":null,"url":null,"abstract":"Understanding the influence of a product is crucially important for making informed business decisions. This paper introduces a new type of skyline queries, called uncertain reverse skyline, for measuring the influence of a probabilistic product in uncertain data settings. More specifically, given a dataset of probabilistic products P and a set of customers C, an uncertain reverse skyline of a probabilistic product q retrieves all customers c ∈ C which include q as one of their preferred products. We present efficient pruning ideas and techniques for processing the uncertain reverse skyline query of a probabilistic product using R-Tree data index. We also present an efficient parallel approach to compute the uncertain reverse skyline and influence score of a probabilistic product. Our approach significantly outperforms the baseline approach derived from the existing literature. The efficiency of our approach is demonstrated by conducting experiments with both real and synthetic datasets.","PeriodicalId":431308,"journal":{"name":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3085504.3085508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Understanding the influence of a product is crucially important for making informed business decisions. This paper introduces a new type of skyline queries, called uncertain reverse skyline, for measuring the influence of a probabilistic product in uncertain data settings. More specifically, given a dataset of probabilistic products P and a set of customers C, an uncertain reverse skyline of a probabilistic product q retrieves all customers c ∈ C which include q as one of their preferred products. We present efficient pruning ideas and techniques for processing the uncertain reverse skyline query of a probabilistic product using R-Tree data index. We also present an efficient parallel approach to compute the uncertain reverse skyline and influence score of a probabilistic product. Our approach significantly outperforms the baseline approach derived from the existing literature. The efficiency of our approach is demonstrated by conducting experiments with both real and synthetic datasets.