Misspecified Bayesian Cramér-Rao Bound for Sparse Bayesian

Milutin Pajovic
{"title":"Misspecified Bayesian Cramér-Rao Bound for Sparse Bayesian","authors":"Milutin Pajovic","doi":"10.1109/SSP.2018.8450780","DOIUrl":null,"url":null,"abstract":"We consider a misspecified Bayesian Cramér-Raobound (MBCRB), justified in a scenario where the assumed data model is different from the true generative model. As an example of this scenario, we study a popular sparse Bayesian learning (SBL) algorithm where the assumed data model, different from the true model, is constructed so as to facilitate a computationally feasible inference of a sparse signal within the Bayesian framework. Formulating the SBL as a Bayesian inference with a misspecified data model, we derive a lower bound on the mean square error (MSE) corresponding to the estimated sparse signal. The simulation study validates the derived bound and shows that the SBL performance approaches the MBCRB at very high signal-to-noise ratios.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider a misspecified Bayesian Cramér-Raobound (MBCRB), justified in a scenario where the assumed data model is different from the true generative model. As an example of this scenario, we study a popular sparse Bayesian learning (SBL) algorithm where the assumed data model, different from the true model, is constructed so as to facilitate a computationally feasible inference of a sparse signal within the Bayesian framework. Formulating the SBL as a Bayesian inference with a misspecified data model, we derive a lower bound on the mean square error (MSE) corresponding to the estimated sparse signal. The simulation study validates the derived bound and shows that the SBL performance approaches the MBCRB at very high signal-to-noise ratios.
稀疏贝叶斯的错误指定的cram - rao界
我们考虑一个错误指定的贝叶斯cramesian - raboound (MBCRB),在假设的数据模型与真实的生成模型不同的场景中得到证明。将SBL描述为具有错误指定数据模型的贝叶斯推理,我们推导出估计稀疏信号对应的均方误差(MSE)的下界。仿真研究验证了导出的边界,并表明在非常高的信噪比下,SBL性能接近MBCRB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信