Jorge Martinez, Silvina Pistonesi, M. C. Maciel, A. G. Flesia
{"title":"Parameter Estimation in a Gibbs-Markov Field Texture Model Based on a Coding Approach","authors":"Jorge Martinez, Silvina Pistonesi, M. C. Maciel, A. G. Flesia","doi":"10.1109/SSP.2018.8450826","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach of the Conditional Least Square (CLS) estimator based on a coding scheme, for estimating the parameter vector associated with an Auto-Binomial model. This method provides a parallel solver for the estimation process. In order to illustrate the performance of the proposed approach, we carried out a Monte Carlo study and a real application for landscape classification using a high-resolution Pléiades-1A satellite image. Experimental results demonstrated the effectiveness of our estimation approach as well as CLS method, but in a lower runtime.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1486 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a novel approach of the Conditional Least Square (CLS) estimator based on a coding scheme, for estimating the parameter vector associated with an Auto-Binomial model. This method provides a parallel solver for the estimation process. In order to illustrate the performance of the proposed approach, we carried out a Monte Carlo study and a real application for landscape classification using a high-resolution Pléiades-1A satellite image. Experimental results demonstrated the effectiveness of our estimation approach as well as CLS method, but in a lower runtime.