Shape Parameter Estimation for K-Distribution Using Variational Bayesian Approach

A. Turlapaty
{"title":"Shape Parameter Estimation for K-Distribution Using Variational Bayesian Approach","authors":"A. Turlapaty","doi":"10.1109/SSP.2018.8450847","DOIUrl":null,"url":null,"abstract":"The sea clutter component in some of the radar and sonar signal models can be statistically characterized as following a K-distribution. This distribution has a shape parameter that is directly related to the number of scatterers. Hence, the estimation of this shape parameter is an important problem and is traditionally addressed using the maximum likelihood (ML), the method of moments (MoM) and their variants. A shortcoming of these methods is lesser accuracy in comparison to the theoretical CRB. In this paper, a variational Bayesian algorithm is proposed that provides both improved convergence and superior accuracy in comparison to the existing algorithms.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The sea clutter component in some of the radar and sonar signal models can be statistically characterized as following a K-distribution. This distribution has a shape parameter that is directly related to the number of scatterers. Hence, the estimation of this shape parameter is an important problem and is traditionally addressed using the maximum likelihood (ML), the method of moments (MoM) and their variants. A shortcoming of these methods is lesser accuracy in comparison to the theoretical CRB. In this paper, a variational Bayesian algorithm is proposed that provides both improved convergence and superior accuracy in comparison to the existing algorithms.
基于变分贝叶斯方法的k分布形状参数估计
在某些雷达和声纳信号模型中,海杂波分量可以按照k分布进行统计表征。这种分布有一个形状参数,它与散射体的数量直接相关。因此,该形状参数的估计是一个重要的问题,传统上使用最大似然(ML),矩量方法(MoM)及其变体来解决。这些方法的缺点是与理论CRB相比精度较低。本文提出了一种变分贝叶斯算法,与现有算法相比,该算法具有更好的收敛性和更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信