Landmark and Intensity-Based Images Elastic Registration Using Hierarchical B-Splines

Tiantian Bian, Zheng Qin, Yu Liu
{"title":"Landmark and Intensity-Based Images Elastic Registration Using Hierarchical B-Splines","authors":"Tiantian Bian, Zheng Qin, Yu Liu","doi":"10.1109/ICSSSM.2007.4280182","DOIUrl":null,"url":null,"abstract":"We present an elastic registration algorithm for the alignment of biological images. Our method combines and extends some of best techniques available in the context of medical imaging. We express the deformation field as a hierarchical B-splines model basing on the information of landmarks. The hierarchical B-splines model allows us to deal with a rich variety of deformations and match two images at increasing levels of detail. We solve the registration problem by minimizing the mutual information between the reference image and the test image. Results using MRI brain data are presented that the degree of matching is higher and the cost of time is less, compared with the algorithm which has not used the concept of hierarchical B-splines.","PeriodicalId":153603,"journal":{"name":"2007 International Conference on Service Systems and Service Management","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Service Systems and Service Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2007.4280182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an elastic registration algorithm for the alignment of biological images. Our method combines and extends some of best techniques available in the context of medical imaging. We express the deformation field as a hierarchical B-splines model basing on the information of landmarks. The hierarchical B-splines model allows us to deal with a rich variety of deformations and match two images at increasing levels of detail. We solve the registration problem by minimizing the mutual information between the reference image and the test image. Results using MRI brain data are presented that the degree of matching is higher and the cost of time is less, compared with the algorithm which has not used the concept of hierarchical B-splines.
基于层次b样条的地标和强度图像弹性配准
提出了一种用于生物图像对齐的弹性配准算法。我们的方法结合并扩展了医学成像领域的一些最佳技术。我们将变形场表示为基于地标信息的分层b样条模型。分层b样条模型允许我们处理丰富多样的变形,并在不断增加的细节水平上匹配两个图像。我们通过最小化参考图像和测试图像之间的互信息来解决配准问题。结果表明,与未使用分层b样条概念的算法相比,该算法的匹配程度更高,所需时间更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信