A proof of the monotone column permanent (MCP) conjecture for dimension 4 via sums-of-squares of rational functions

E. Kaltofen, Zhengfeng Yang, L. Zhi
{"title":"A proof of the monotone column permanent (MCP) conjecture for dimension 4 via sums-of-squares of rational functions","authors":"E. Kaltofen, Zhengfeng Yang, L. Zhi","doi":"10.1145/1577190.1577204","DOIUrl":null,"url":null,"abstract":"For a proof of the monotone column permanent (MCP)conjecture for dimension 4 it is sufficient to show that 4 polynomials, which come from the permanents of real matrices, are nonnegative for all real values of the variables, where the degrees and the number of the variables of these polynomials are all 8. Here we apply a hybrid symbolic-numerical algorithm for certifying that these polynomials can be written as an exact fraction of two polynomial sums-of-squares (SOS) with rational coefficients.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577190.1577204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

For a proof of the monotone column permanent (MCP)conjecture for dimension 4 it is sufficient to show that 4 polynomials, which come from the permanents of real matrices, are nonnegative for all real values of the variables, where the degrees and the number of the variables of these polynomials are all 8. Here we apply a hybrid symbolic-numerical algorithm for certifying that these polynomials can be written as an exact fraction of two polynomial sums-of-squares (SOS) with rational coefficients.
用有理函数的平方和证明4维单调列永久猜想
对于四维单调列永久猜想的证明,充分证明了由实矩阵的永久组成的4个多项式对于所有变量的实值都是非负的,其中这些多项式的阶数和变量数都是8。在这里,我们应用一个混合符号-数值算法来证明这些多项式可以被写成两个多项式平方和(SOS)的一个精确分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信