{"title":"Attitude control of an autonomous octorotor","authors":"S. J. Haddadi, P. Zarafshan","doi":"10.1109/ICROM.2014.6990958","DOIUrl":null,"url":null,"abstract":"In this paper, the design and implementation procedure of an attitude controller on an autonomous Octorotor flying robot is studied. In an autonomous Octorotor flying robot, motors number is increased to eight motors which all of motors set as coaxial and they are installed two by two. In fact, two motors are installed on the four-rotorcraft axis and so, they propel coaxially. Also, the design procedure of the mechanical and electrical subsystems is done based on a Quadrotor flying robot. There are many issues in a controller design procedure of a flying robot while its motion receives from eight motors. In fact, the main subject of flying robot motion is done by Brushless DC motors. Also, IMU works as stabilizers in the motion control system. The stabilization control of the Octorotor is supplied by the designed PID controller. Finally, a trajectory is determined by a GPS in Mission Planner software for the outdoor environment. Implementation results of the designed attitude controller on the Autonomous Octorotor are shown.","PeriodicalId":177375,"journal":{"name":"2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICROM.2014.6990958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, the design and implementation procedure of an attitude controller on an autonomous Octorotor flying robot is studied. In an autonomous Octorotor flying robot, motors number is increased to eight motors which all of motors set as coaxial and they are installed two by two. In fact, two motors are installed on the four-rotorcraft axis and so, they propel coaxially. Also, the design procedure of the mechanical and electrical subsystems is done based on a Quadrotor flying robot. There are many issues in a controller design procedure of a flying robot while its motion receives from eight motors. In fact, the main subject of flying robot motion is done by Brushless DC motors. Also, IMU works as stabilizers in the motion control system. The stabilization control of the Octorotor is supplied by the designed PID controller. Finally, a trajectory is determined by a GPS in Mission Planner software for the outdoor environment. Implementation results of the designed attitude controller on the Autonomous Octorotor are shown.