Comparison on Frequency Stability of High Inverter Penetration Power System with Different Grid-forming Controls

Chenyang Li, Yongzhang Huang, Hongyuan Deng, Xinyue Zhang
{"title":"Comparison on Frequency Stability of High Inverter Penetration Power System with Different Grid-forming Controls","authors":"Chenyang Li, Yongzhang Huang, Hongyuan Deng, Xinyue Zhang","doi":"10.1109/ICoPESA54515.2022.9754388","DOIUrl":null,"url":null,"abstract":"With the penetration rate of renewable energy has been rapidly increasing in power system, synchronous generators (SGs) are gradually replaced by power electronics. However, wind turbines and photovoltaics nearly have none moment of inertia, they exhibit grid-following characteristics and can’t provide effective support. As a result, grid-forming inverters (GFMs) are proposed for improving the grid stability. In this article, the transient response of GFMs with droop and virtual synchronous generator (VSG) methods are studied, and motor-generator pair (MGP) with improved power control is proposed as a novel grid-forming method. Frequency stability of grid-forming inverters, SGs and MGPs considering control delay and current limitations are studied through IEEE standard 3-generator 9-bus system to demonstrate the differences between grid-forming methods and required characteristics for frequency stability, this article provides a broader view for grid-forming.","PeriodicalId":142509,"journal":{"name":"2022 International Conference on Power Energy Systems and Applications (ICoPESA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Power Energy Systems and Applications (ICoPESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoPESA54515.2022.9754388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the penetration rate of renewable energy has been rapidly increasing in power system, synchronous generators (SGs) are gradually replaced by power electronics. However, wind turbines and photovoltaics nearly have none moment of inertia, they exhibit grid-following characteristics and can’t provide effective support. As a result, grid-forming inverters (GFMs) are proposed for improving the grid stability. In this article, the transient response of GFMs with droop and virtual synchronous generator (VSG) methods are studied, and motor-generator pair (MGP) with improved power control is proposed as a novel grid-forming method. Frequency stability of grid-forming inverters, SGs and MGPs considering control delay and current limitations are studied through IEEE standard 3-generator 9-bus system to demonstrate the differences between grid-forming methods and required characteristics for frequency stability, this article provides a broader view for grid-forming.
不同成网控制下高逆变器侵彻电力系统频率稳定性比较
随着可再生能源在电力系统中的渗透率迅速提高,同步发电机逐渐被电力电子设备所取代。然而,风力涡轮机和光伏几乎没有转动惯量,它们表现出电网跟随特性,不能提供有效的支撑。为了提高电网的稳定性,提出了并网逆变器。本文研究了采用下垂和虚拟同步发电机(VSG)方法的GFMs的暂态响应,并提出了改进功率控制的电机-发电机对(MGP)作为一种新的并网方法。本文通过IEEE标准3-发电机9-母线系统,研究了考虑控制延迟和电流限制的并网逆变器、SGs和mgp的频率稳定性,说明了不同的并网方式和频率稳定性所需的特性之间的差异,为并网提供了更广阔的视野。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信