{"title":"Customization and 3D printing: a challenging playground for software product lines","authors":"M. Acher, B. Baudry, Olivier Barais, J. Jézéquel","doi":"10.1145/2648511.2648526","DOIUrl":null,"url":null,"abstract":"3D printing is gaining more and more momentum to build customized product in a wide variety of fields. We conduct an exploratory study of Thingiverse, the most popular Website for sharing user-created 3D design files, in order to establish a possible connection with software product line (SPL) engineering. We report on the socio-technical aspects and current practices for modeling variability, implementing variability, configuring and deriving products, and reusing artefacts. We provide hints that SPL-alike techniques are practically used in 3D printing and thus relevant. Finally, we discuss why the customization in the 3D printing field represents a challenging playground for SPL engineering.","PeriodicalId":303765,"journal":{"name":"Proceedings of the 18th International Software Product Line Conference - Volume 1","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Software Product Line Conference - Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2648511.2648526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
3D printing is gaining more and more momentum to build customized product in a wide variety of fields. We conduct an exploratory study of Thingiverse, the most popular Website for sharing user-created 3D design files, in order to establish a possible connection with software product line (SPL) engineering. We report on the socio-technical aspects and current practices for modeling variability, implementing variability, configuring and deriving products, and reusing artefacts. We provide hints that SPL-alike techniques are practically used in 3D printing and thus relevant. Finally, we discuss why the customization in the 3D printing field represents a challenging playground for SPL engineering.