Coupled Finite Element Analysis of Generalized Thermoelasticity in Semi-Infinite Medium

Leping Zhou, D. Tang, N. Araki
{"title":"Coupled Finite Element Analysis of Generalized Thermoelasticity in Semi-Infinite Medium","authors":"Leping Zhou, D. Tang, N. Araki","doi":"10.1299/JSMEA.49.195","DOIUrl":null,"url":null,"abstract":"The equations for the extended Lord-Shulman (LS) and Green-Lindsay (GL) models are solved for thermoelastic analysis in a semi-infinite medium by employing a finite element method using the theory of virtual displacement and the implicit Newmark algorithm. Simulations for both one-dimensional (1D) and two-dimensional (2D) models are performed to achieve the best approximation under prescribed boundary conditions. The effects of thermoelastic coupling factors and relaxation parameters on thermomechanical behavior of the medium are discussed for the two models. The results are consistent with our previous work using the Laplace transformation method.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The equations for the extended Lord-Shulman (LS) and Green-Lindsay (GL) models are solved for thermoelastic analysis in a semi-infinite medium by employing a finite element method using the theory of virtual displacement and the implicit Newmark algorithm. Simulations for both one-dimensional (1D) and two-dimensional (2D) models are performed to achieve the best approximation under prescribed boundary conditions. The effects of thermoelastic coupling factors and relaxation parameters on thermomechanical behavior of the medium are discussed for the two models. The results are consistent with our previous work using the Laplace transformation method.
半无限介质中广义热弹性的耦合有限元分析
采用虚拟位移理论和隐式Newmark算法,对半无限介质热弹性分析的扩展Lord-Shulman (LS)和Green-Lindsay (GL)模型进行了有限元求解。对一维(1D)和二维(2D)模型进行了模拟,以在规定的边界条件下获得最佳近似。讨论了两种模型中热弹性耦合因子和松弛参数对介质热力学行为的影响。所得结果与我们以前用拉普拉斯变换方法所做的工作一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信