Table Tennis ball kinematic parameters estimation from non-intrusive single-view videos

J. Calandre, Renaud Péteri, L. Mascarilla, B. Tremblais
{"title":"Table Tennis ball kinematic parameters estimation from non-intrusive single-view videos","authors":"J. Calandre, Renaud Péteri, L. Mascarilla, B. Tremblais","doi":"10.1109/CBMI50038.2021.9461884","DOIUrl":null,"url":null,"abstract":"The context of this research is the use of computer vision to assess the quality of sport gestures in non-intrusive conditions, i.e. without any body-worn sensors. This paper addresses the estimation of Table Tennis ball kinematic parameters from single-view videos. These parameters are important for analyzing effects given on the ball by the players, a key factor in the Table Tennis game. We introduce 3D ball trajectories extraction and analysis with very few acquisition constraints. To obtain ball to camera distance, the estimation of the apparent ball size is performed with a 2D CNN trained on a generated dataset. By formulating the problem of trajectory estimation as the solution of an Ordinary Differential Equation (ODE) with initial conditions, we can extract the ball kinematic parameters such as tangential and rotation speeds. Validation experiments are presented on both a synthetic dataset and on real video sequences.","PeriodicalId":289262,"journal":{"name":"2021 International Conference on Content-Based Multimedia Indexing (CBMI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI50038.2021.9461884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The context of this research is the use of computer vision to assess the quality of sport gestures in non-intrusive conditions, i.e. without any body-worn sensors. This paper addresses the estimation of Table Tennis ball kinematic parameters from single-view videos. These parameters are important for analyzing effects given on the ball by the players, a key factor in the Table Tennis game. We introduce 3D ball trajectories extraction and analysis with very few acquisition constraints. To obtain ball to camera distance, the estimation of the apparent ball size is performed with a 2D CNN trained on a generated dataset. By formulating the problem of trajectory estimation as the solution of an Ordinary Differential Equation (ODE) with initial conditions, we can extract the ball kinematic parameters such as tangential and rotation speeds. Validation experiments are presented on both a synthetic dataset and on real video sequences.
基于非侵入式单视角视频的乒乓球运动参数估计
本研究的背景是使用计算机视觉来评估非侵入性条件下运动手势的质量,即没有任何身体佩戴的传感器。本文研究了单视图视频中乒乓球运动参数的估计问题。这些参数对于分析运动员对球的作用具有重要意义,是乒乓球比赛的关键因素。我们引入了三维球轨迹的提取和分析,几乎没有采集约束。为了获得球到相机的距离,使用在生成的数据集上训练的2D CNN来估计表观球的大小。通过将轨迹估计问题表述为具有初始条件的常微分方程(ODE)的解,可以提取球的切向和转速等运动学参数。在合成数据集和真实视频序列上进行了验证实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信