Face recognition based on wavelet transform and SVM

Bing Luo, Yun Zhang, Yunhong Pan
{"title":"Face recognition based on wavelet transform and SVM","authors":"Bing Luo, Yun Zhang, Yunhong Pan","doi":"10.1109/ICIA.2005.1635115","DOIUrl":null,"url":null,"abstract":"This paper proposed a new scheme for human face recognition using wavelet transform combined with support vector machine as well as clustering method. The features in our research are: 1) using low frequency subband coefficients LL of wavelet decomposition as input for SVM, to attenuate the influence of natural differences, 2) do fine recognition by multi-method of PCA, LFA on pre-accepted image to decrease FAR and for machine learning, 3) conduct homomorphic filter to face image for pre-processing to deal with illuminations influence, 4) machine learning while recognition, update or adjust mode vectors by results of fine recognition, 5) clustering before doing face recognition on multi-target gallery to reduce search time. Experiments on ORL face dataset and self-build face library show efficient results.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

This paper proposed a new scheme for human face recognition using wavelet transform combined with support vector machine as well as clustering method. The features in our research are: 1) using low frequency subband coefficients LL of wavelet decomposition as input for SVM, to attenuate the influence of natural differences, 2) do fine recognition by multi-method of PCA, LFA on pre-accepted image to decrease FAR and for machine learning, 3) conduct homomorphic filter to face image for pre-processing to deal with illuminations influence, 4) machine learning while recognition, update or adjust mode vectors by results of fine recognition, 5) clustering before doing face recognition on multi-target gallery to reduce search time. Experiments on ORL face dataset and self-build face library show efficient results.
基于小波变换和支持向量机的人脸识别
提出了一种基于小波变换、支持向量机和聚类方法的人脸识别新方案。我们研究的特点是:1)使用小波分解的低频子带系数LL作为支持向量机的输入,以减弱自然差异的影响;2)对预接受图像采用PCA、LFA等多种方法进行精细识别,以降低FAR并进行机器学习;3)对人脸图像进行同态滤波预处理,以处理光照影响;5)对多目标图库进行人脸识别前聚类,减少搜索时间。在ORL人脸数据集和自建人脸库上进行了实验,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信