Early Pedestrian Intent Prediction via Features Estimation

Nada Osman, Enrico Cancelli, Guglielmo Camporese, Pasquale Coscia, Lamberto Ballan
{"title":"Early Pedestrian Intent Prediction via Features Estimation","authors":"Nada Osman, Enrico Cancelli, Guglielmo Camporese, Pasquale Coscia, Lamberto Ballan","doi":"10.1109/ICIP46576.2022.9897636","DOIUrl":null,"url":null,"abstract":"Anticipating human motion is an essential requirement for autonomous vehicles and robots in order to primary guarantee people’s safety. In urban scenarios, they interact with humans, the surrounding environment, and other vehicles relying on several cues to forecast crossing or not crossing intentions. For these reasons, this challenging task is often tackled using both visual and non-visual features to anticipate future actions from 2 s to 1 s earlier the event. Our work primarily aims to revise this standard evaluation protocol to forecast crossing events as early as possible. To this end, we conceive a solution upon an extensively used model for egocentric action anticipation (RU-LSTM), proposing to envision future features, or modalities, that can better infer human intentions using a properly attention-based fusion mechanism. We validate our model against JAAD and PIE datasets and demonstrate that an intent prediction model can benefit from these additional clues for anticipating pedestrians crossing events.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Anticipating human motion is an essential requirement for autonomous vehicles and robots in order to primary guarantee people’s safety. In urban scenarios, they interact with humans, the surrounding environment, and other vehicles relying on several cues to forecast crossing or not crossing intentions. For these reasons, this challenging task is often tackled using both visual and non-visual features to anticipate future actions from 2 s to 1 s earlier the event. Our work primarily aims to revise this standard evaluation protocol to forecast crossing events as early as possible. To this end, we conceive a solution upon an extensively used model for egocentric action anticipation (RU-LSTM), proposing to envision future features, or modalities, that can better infer human intentions using a properly attention-based fusion mechanism. We validate our model against JAAD and PIE datasets and demonstrate that an intent prediction model can benefit from these additional clues for anticipating pedestrians crossing events.
基于特征估计的早期行人意图预测
预测人类的运动是自动驾驶汽车和机器人的基本要求,以从根本上保证人的安全。在城市场景中,它们与人类、周围环境和其他车辆相互作用,依靠几种线索来预测是否穿越的意图。由于这些原因,这个具有挑战性的任务通常使用视觉和非视觉特征来预测事件发生前2到15秒的未来行动。我们的工作主要是修订这一标准评估方案,以便尽早预测交叉事件。为此,我们在广泛使用的自我中心行动预期模型(RU-LSTM)的基础上构想了一个解决方案,提出了设想未来的特征或模式,可以使用适当的基于注意力的融合机制更好地推断人类意图。我们针对JAAD和PIE数据集验证了我们的模型,并证明意图预测模型可以从这些额外的线索中受益,以预测行人过马路事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信