Extracting Intrauterine Device Usage from Clinical Texts Using Natural Language Processing

Jianlin Shi, D. Mowery, Mingyuan Zhang, J. Sanders, W. Chapman, L. Gawron
{"title":"Extracting Intrauterine Device Usage from Clinical Texts Using Natural Language Processing","authors":"Jianlin Shi, D. Mowery, Mingyuan Zhang, J. Sanders, W. Chapman, L. Gawron","doi":"10.1109/ICHI.2017.21","DOIUrl":null,"url":null,"abstract":"Intrauterine devices (IUDs) are highly-effective contraceptive methods for preventing unintended pregnancy and related adverse outcomes. Clinical Decision Support (CDS) systems could aid care providers in identifying patients at risk for pregnancy due to lack of contraceptive use. However, research suggests that this information is not reliably documented in structured data fields for query, but rather in the clinical notes. As a first step towards developing a robust CDS tool to identify high-risk patients for contraceptive counseling, we developed a clinical information extraction tool, EasyCIE, that readily identifies mentions of IUD usage and classifies whether a note contains evidence that an IUD is present or not for review by domain experts. In this preliminary study, EasyCIE produced high recall and excellent precision distinguishing notes of patients with current IUD usage from notes of patients with historical or no usage.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Intrauterine devices (IUDs) are highly-effective contraceptive methods for preventing unintended pregnancy and related adverse outcomes. Clinical Decision Support (CDS) systems could aid care providers in identifying patients at risk for pregnancy due to lack of contraceptive use. However, research suggests that this information is not reliably documented in structured data fields for query, but rather in the clinical notes. As a first step towards developing a robust CDS tool to identify high-risk patients for contraceptive counseling, we developed a clinical information extraction tool, EasyCIE, that readily identifies mentions of IUD usage and classifies whether a note contains evidence that an IUD is present or not for review by domain experts. In this preliminary study, EasyCIE produced high recall and excellent precision distinguishing notes of patients with current IUD usage from notes of patients with historical or no usage.
使用自然语言处理从临床文本中提取宫内节育器使用情况
宫内节育器(iud)是预防意外怀孕和相关不良后果的高效避孕方法。临床决策支持(CDS)系统可以帮助医护人员识别由于缺乏避孕措施而有怀孕风险的患者。然而,研究表明,这些信息并没有可靠地记录在结构化数据字段中以供查询,而是记录在临床记录中。作为开发一个强大的CDS工具来识别高危患者进行避孕咨询的第一步,我们开发了一个临床信息提取工具EasyCIE,它可以很容易地识别宫内节育器的使用情况,并对记录是否包含宫内节育器存在的证据进行分类,以供领域专家审查。在本初步研究中,EasyCIE在区分当前使用宫内节育器的患者笔记与历史或未使用宫内节育器的患者笔记方面具有较高的召回率和良好的精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信