Neural network application to state estimation computation

T. Nakagawa, Y. Hayashi, S. Iwamoto
{"title":"Neural network application to state estimation computation","authors":"T. Nakagawa, Y. Hayashi, S. Iwamoto","doi":"10.1109/ANN.1991.213480","DOIUrl":null,"url":null,"abstract":"In power systems state estimation computation takes an important role in security controls, and the weighted least squares method and the fast decoupled method are widely-used at present. State estimation computation using the existing Von-Neumann type computer is reaching a limit as far as the solution techniques are concerned, and it is very difficult to expect much faster methods. In order to solve the problem, the authors employ a neural network theory, the Hopfield network theory, which has an ultra parallel algorithm and is different from the existing calculating algorithms, for state estimation computation. A feasibility study using a 6 bus system is shown.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In power systems state estimation computation takes an important role in security controls, and the weighted least squares method and the fast decoupled method are widely-used at present. State estimation computation using the existing Von-Neumann type computer is reaching a limit as far as the solution techniques are concerned, and it is very difficult to expect much faster methods. In order to solve the problem, the authors employ a neural network theory, the Hopfield network theory, which has an ultra parallel algorithm and is different from the existing calculating algorithms, for state estimation computation. A feasibility study using a 6 bus system is shown.<>
神经网络在状态估计计算中的应用
在电力系统中,状态估计计算在安全控制中起着重要的作用,目前最常用的方法是加权最小二乘法和快速解耦法。就求解技术而言,使用现有的冯-诺伊曼型计算机进行状态估计计算已经达到了极限,并且很难期望更快的方法。为了解决这一问题,作者采用神经网络理论——Hopfield网络理论进行状态估计计算,该理论与现有的计算算法不同,具有超并行算法。展示了采用6总线系统的可行性研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信