Bimanual Arm Movements Decoding using Hybrid Method

Hoseok Choi, D. Jang, K. Lee
{"title":"Bimanual Arm Movements Decoding using Hybrid Method","authors":"Hoseok Choi, D. Jang, K. Lee","doi":"10.1109/IWW-BCI.2017.7858159","DOIUrl":null,"url":null,"abstract":"In arm movement BCI (brain-computer interface), the unimanual research has been well. However, the bimanual brain state is known to be different from the unimanual one, so the conventional arm movement decoding method seems to be insufficient to decode bimanual movement. In this research, we suggested the hybrid method to improve the decoding accuracy for bimanual movement estimation. The method consists of two step; 1st step: the movement conditions classification, and 2nd step: the hand trajectory prediction algorithm. As a result, the hybrid method showed improved arm movement decoding performance and significant and stable decoding rate over several months for bimanual tasks. This technique could be applied to arm movement BCI in real world and the various neuro-prosthetics fields.","PeriodicalId":443427,"journal":{"name":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2017.7858159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In arm movement BCI (brain-computer interface), the unimanual research has been well. However, the bimanual brain state is known to be different from the unimanual one, so the conventional arm movement decoding method seems to be insufficient to decode bimanual movement. In this research, we suggested the hybrid method to improve the decoding accuracy for bimanual movement estimation. The method consists of two step; 1st step: the movement conditions classification, and 2nd step: the hand trajectory prediction algorithm. As a result, the hybrid method showed improved arm movement decoding performance and significant and stable decoding rate over several months for bimanual tasks. This technique could be applied to arm movement BCI in real world and the various neuro-prosthetics fields.
用混合方法解码双手手臂动作
在手臂运动脑机接口(BCI)方面,人工操作的研究已经取得了很好的进展。然而,已知双手的大脑状态与单手状态不同,因此传统的手臂运动解码方法似乎不足以解码双手运动。在这项研究中,我们提出了一种混合的方法来提高手动运动估计的解码精度。该方法包括两个步骤;第一步:运动条件分类,第二步:手部轨迹预测算法。结果表明,该方法在几个月的时间内对手动任务的手臂动作解码性能有明显提高,译码率显著且稳定。该技术可应用于现实生活中的手臂运动脑机接口和各种神经修复领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信