{"title":"Self-Distilled Quantization: Achieving High Compression Rates in Transformer-Based Language Models","authors":"James O'Neill, Sourav Dutta","doi":"10.48550/arXiv.2307.05972","DOIUrl":null,"url":null,"abstract":"We investigate the effects of post-training quantization and quantization-aware training on the generalization of Transformer language models. We present a new method called self-distilled quantization (SDQ) that minimizes accumulative quantization errors and outperforms baselines. We apply SDQ to multilingual models XLM-R_{\\text{Base}} and InfoXLM_{\\text{Base}} and demonstrate that both models can be reduced from 32-bit floating point weights to 8-bit integer weights while maintaining a high level of performance on the XGLUE benchmark. Our results also highlight the challenges of quantizing multilingual models, which must generalize to languages they were not fine-tuned on.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.05972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the effects of post-training quantization and quantization-aware training on the generalization of Transformer language models. We present a new method called self-distilled quantization (SDQ) that minimizes accumulative quantization errors and outperforms baselines. We apply SDQ to multilingual models XLM-R_{\text{Base}} and InfoXLM_{\text{Base}} and demonstrate that both models can be reduced from 32-bit floating point weights to 8-bit integer weights while maintaining a high level of performance on the XGLUE benchmark. Our results also highlight the challenges of quantizing multilingual models, which must generalize to languages they were not fine-tuned on.