Image compression using a stochastic competitive learning algorithm (SCoLA)

A. Bouzerdoum
{"title":"Image compression using a stochastic competitive learning algorithm (SCoLA)","authors":"A. Bouzerdoum","doi":"10.1109/ISSPA.2001.950200","DOIUrl":null,"url":null,"abstract":"We introduce a new stochastic competitive learning algorithm (SCoLA) and apply it to vector quantization for image compression. In competitive learning, the training process involves presenting, simultaneously, an input vector to each of the competing neurons, which then compare the input vector to their own weight vectors and one of them is declared the winner based on some deterministic distortion measure. Here a stochastic criterion is used for selecting the winning neuron, whose weights are then updated to become more like the input vector. The performance of the new algorithm is compared to that of frequency-sensitive competitive learning (FSCL); it was found that SCoLA achieves higher peak signal-to-noise ratios (PSNR) than FSCL.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.950200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a new stochastic competitive learning algorithm (SCoLA) and apply it to vector quantization for image compression. In competitive learning, the training process involves presenting, simultaneously, an input vector to each of the competing neurons, which then compare the input vector to their own weight vectors and one of them is declared the winner based on some deterministic distortion measure. Here a stochastic criterion is used for selecting the winning neuron, whose weights are then updated to become more like the input vector. The performance of the new algorithm is compared to that of frequency-sensitive competitive learning (FSCL); it was found that SCoLA achieves higher peak signal-to-noise ratios (PSNR) than FSCL.
基于随机竞争学习算法的图像压缩
提出了一种新的随机竞争学习算法(SCoLA),并将其应用于图像压缩的矢量量化。在竞争学习中,训练过程包括同时向每个竞争神经元提供一个输入向量,然后将输入向量与它们自己的权重向量进行比较,并根据一些确定性失真度量宣布其中一个为获胜者。这里使用随机标准来选择获胜的神经元,然后将其权重更新为更像输入向量。将新算法的性能与频率敏感竞争学习(FSCL)进行了比较;结果表明,与FSCL相比,SCoLA具有更高的峰值信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信