BioSimCSE: BioMedical Sentence Embeddings using Contrastive learning

Kamal Raj Kanakarajan, Bhuvana Kundumani, A. Abraham, Malaikannan Sankarasubbu
{"title":"BioSimCSE: BioMedical Sentence Embeddings using Contrastive learning","authors":"Kamal Raj Kanakarajan, Bhuvana Kundumani, A. Abraham, Malaikannan Sankarasubbu","doi":"10.18653/v1/2022.louhi-1.10","DOIUrl":null,"url":null,"abstract":"Sentence embeddings in the form of fixed-size vectors that capture the information in the sentence as well as the context are critical components of Natural Language Processing systems. With transformer model based sentence encoders outperforming the other sentence embedding methods in the general domain, we explore the transformer based architectures to generate dense sentence embeddings in the biomedical domain. In this work, we present BioSimCSE, where we train sentence embeddings with domain specific transformer based models with biomedical texts. We assess our model’s performance with zero-shot and fine-tuned settings on Semantic Textual Similarity (STS) and Recognizing Question Entailment (RQE) tasks. Our BioSimCSE model using BioLinkBERT achieves state of the art (SOTA) performance on both tasks.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Health Text Mining and Information Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.louhi-1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sentence embeddings in the form of fixed-size vectors that capture the information in the sentence as well as the context are critical components of Natural Language Processing systems. With transformer model based sentence encoders outperforming the other sentence embedding methods in the general domain, we explore the transformer based architectures to generate dense sentence embeddings in the biomedical domain. In this work, we present BioSimCSE, where we train sentence embeddings with domain specific transformer based models with biomedical texts. We assess our model’s performance with zero-shot and fine-tuned settings on Semantic Textual Similarity (STS) and Recognizing Question Entailment (RQE) tasks. Our BioSimCSE model using BioLinkBERT achieves state of the art (SOTA) performance on both tasks.
BioSimCSE:使用对比学习的生物医学句子嵌入
以固定大小向量的形式捕获句子中的信息以及上下文是自然语言处理系统的关键组成部分。由于基于变压器模型的句子编码器在一般领域优于其他句子嵌入方法,我们探索了基于变压器的体系结构来生成生物医学领域的密集句子嵌入。在这项工作中,我们提出了BioSimCSE,我们在生物医学文本中使用基于领域特定转换器的模型训练句子嵌入。我们在语义文本相似性(STS)和识别问题蕴涵(RQE)任务上通过零射击和微调设置来评估模型的性能。我们使用BioLinkBERT的BioSimCSE模型在这两个任务上都实现了最先进的(SOTA)性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信