Information preservation in static index pruning

Ruey-Cheng Chen, Chia-Jung Lee, Chiung-min Tsai, J. Hsiang
{"title":"Information preservation in static index pruning","authors":"Ruey-Cheng Chen, Chia-Jung Lee, Chiung-min Tsai, J. Hsiang","doi":"10.1145/2396761.2398673","DOIUrl":null,"url":null,"abstract":"We develop a new static index pruning criterion based on the notion of information preservation. This idea is motivated by the fact that model degeneration, as does static index pruning, inevitably reduces the predictive power of the resulting model. We model this loss in predictive power using conditional entropy and show that the decision in static index pruning can therefore be optimized to preserve information as much as possible. We evaluated the proposed approach on three different test corpora, and the result shows that our approach is comparable in retrieval performance to state-of-the-art methods. When efficiency is of concern, our method has some advantages over the reference methods and is therefore suggested in Web retrieval settings.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We develop a new static index pruning criterion based on the notion of information preservation. This idea is motivated by the fact that model degeneration, as does static index pruning, inevitably reduces the predictive power of the resulting model. We model this loss in predictive power using conditional entropy and show that the decision in static index pruning can therefore be optimized to preserve information as much as possible. We evaluated the proposed approach on three different test corpora, and the result shows that our approach is comparable in retrieval performance to state-of-the-art methods. When efficiency is of concern, our method has some advantages over the reference methods and is therefore suggested in Web retrieval settings.
静态索引剪枝中的信息保存
基于信息保存的概念,提出了一种新的静态索引修剪准则。这个想法源于这样一个事实,即模型退化和静态索引修剪一样,不可避免地会降低最终模型的预测能力。我们使用条件熵来模拟这种预测能力的损失,并表明静态索引修剪的决策因此可以优化以尽可能多地保留信息。我们在三个不同的测试语料库上评估了所提出的方法,结果表明我们的方法在检索性能上与最先进的方法相当。当考虑效率时,我们的方法比参考方法有一些优势,因此在Web检索设置中建议使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信